5,101 research outputs found

    Fast and Deterministic Approximations for k-Cut

    Get PDF
    In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k connected components. The minimum weight k-cut can be computed in n^O(k) time, but when k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [Goldschmidt and Hochbaum, 1994]. For poly(m,n,k)-time algorithms, the best possible approximation factor is essentially 2 under the small set expansion hypothesis [Manurangsi, 2017]. Saran and Vazirani [1995] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed via O(k) minimum cuts, which implies a O~(km) randomized running time via the nearly linear time randomized min-cut algorithm of Karger [2000]. Nagamochi and Kamidoi [2007] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed deterministically in O(mn + n^2 log n) time. These results prompt two basic questions. The first concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts matching the randomized running time of O~(km)? The second question qualitatively compares minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as the minimum cut - in O~(m) randomized time? We give a deterministic approximation algorithm that computes (2 + eps)-minimum k-cuts in O(m log^3 n / eps^2) time, via a (1 + eps)-approximation for an LP relaxation of k-cut

    Connectivity Oracles for Graphs Subject to Vertex Failures

    Full text link
    We introduce new data structures for answering connectivity queries in graphs subject to batched vertex failures. A deterministic structure processes a batch of ddd\leq d_{\star} failed vertices in O~(d3)\tilde{O}(d^3) time and thereafter answers connectivity queries in O(d)O(d) time. It occupies space O(dmlogn)O(d_{\star} m\log n). We develop a randomized Monte Carlo version of our data structure with update time O~(d2)\tilde{O}(d^2), query time O(d)O(d), and space O~(m)\tilde{O}(m) for any failure bound dnd\le n. This is the first connectivity oracle for general graphs that can efficiently deal with an unbounded number of vertex failures. We also develop a more efficient Monte Carlo edge-failure connectivity oracle. Using space O(nlog2n)O(n\log^2 n), dd edge failures are processed in O(dlogdloglogn)O(d\log d\log\log n) time and thereafter, connectivity queries are answered in O(loglogn)O(\log\log n) time, which are correct w.h.p. Our data structures are based on a new decomposition theorem for an undirected graph G=(V,E)G=(V,E), which is of independent interest. It states that for any terminal set UVU\subseteq V we can remove a set BB of U/(s2)|U|/(s-2) vertices such that the remaining graph contains a Steiner forest for UBU-B with maximum degree ss

    On the Size and the Approximability of Minimum Temporally Connected Subgraphs

    Get PDF
    We consider temporal graphs with discrete time labels and investigate the size and the approximability of minimum temporally connected spanning subgraphs. We present a family of minimally connected temporal graphs with nn vertices and Ω(n2)\Omega(n^2) edges, thus resolving an open question of (Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity certificates. Next, we consider the problem of computing a minimum weight subset of temporal edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved in polynomial time if the underlying graph has bounded treewidth. We also show that the best approximation ratio for MTC is at least O(2log1ϵn)O(2^{\log^{1-\epsilon} n}) and at most O(min{n1+ϵ,(ΔM)2/3+ϵ})O(\min\{n^{1+\epsilon}, (\Delta M)^{2/3+\epsilon}\}), for any constant ϵ>0\epsilon > 0, where MM is the number of temporal edges and Δ\Delta is the maximum degree of the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard and that MTC is efficiently solvable in trees and 22-approximable in cycles

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    Parameterized Complexity of Secluded Connectivity Problems

    Get PDF
    The Secluded Path problem models a situation where a sensitive information has to be transmitted between a pair of nodes along a path in a network. The measure of the quality of a selected path is its exposure, which is the total weight of vertices in its closed neighborhood. In order to minimize the risk of intercepting the information, we are interested in selecting a secluded path, i.e. a path with a small exposure. Similarly, the Secluded Steiner Tree problem is to find a tree in a graph connecting a given set of terminals such that the exposure of the tree is minimized. The problems were introduced by Chechik et al. in [ESA 2013]. Among other results, Chechik et al. have shown that Secluded Path is fixed-parameter tractable (FPT) on unweighted graphs being parameterized by the maximum vertex degree of the graph and that Secluded Steiner Tree is FPT parameterized by the treewidth of the graph. In this work, we obtain the following results about parameterized complexity of secluded connectivity problems. We give FPT-algorithms deciding if a graph G with a given cost function contains a secluded path and a secluded Steiner tree of exposure at most k with the cost at most C. We initiate the study of "above guarantee" parameterizations for secluded problems, where the lower bound is given by the size of a Steiner tree. We investigate Secluded Steiner Tree from kernelization perspective and provide several lower and upper bounds when parameters are the treewidth, the size of a vertex cover, maximum vertex degree and the solution size. Finally, we refine the algorithmic result of Chechik et al. by improving the exponential dependence from the treewidth of the input graph.Comment: Minor corrections are don
    corecore