12,244 research outputs found

    A Flexible Online Framework for Projection-Based STFT Phase Retrieval

    Full text link
    Several recent contributions in the field of iterative STFT phase retrieval have demonstrated that the performance of the classical Griffin-Lim method can be considerably improved upon. By using the same projection operators as Griffin-Lim, but combining them in innovative ways, these approaches achieve better results in terms of both reconstruction quality and required number of iterations, while retaining a similar computational complexity per iteration. However, like Griffin-Lim, these algorithms operate in an offline manner and thus require an entire spectrogram as input, which is an unrealistic requirement for many real-world speech communication applications. We propose to extend RTISI -- an existing online (frame-by-frame) variant of the Griffin-Lim algorithm -- into a flexible framework that enables straightforward online implementation of any algorithm based on iterative projections. We further employ this framework to implement online variants of the fast Griffin-Lim algorithm, the accelerated Griffin-Lim algorithm, and two algorithms from the optics domain. Evaluation results on speech signals show that, similarly to the offline case, these algorithms can achieve a considerable performance gain compared to RTISI.Comment: Submitted to ICASSP 2

    Accelerated Griffin-Lim algorithm: A fast and provably converging numerical method for phase retrieval

    Full text link
    The recovery of a signal from the magnitudes of its transformation, like the Fourier transform, is known as the phase retrieval problem and is of big relevance in various fields of engineering and applied physics. In this paper, we present a fast inertial/momentum based algorithm for the phase retrieval problem and we prove a convergence guarantee for the new algorithm and for the Fast Griffin-Lim algorithm, whose convergence remained unproven in the past decade. In the final chapter, we compare the algorithm for the Short Time Fourier transform phase retrieval with the Griffin-Lim algorithm and FGLA and to other iterative algorithms typically used for this type of problem

    A fast Griffin Lim Algorithm

    Get PDF
    In this paper, we present a new algorithm to estimate a signal from its short-time Fourier transform modulus (STFTM). This algorithm is computationally simple and is obtained by an acceleration of the well-known Griffin-Lim algorithm (GLA). Before deriving the algorithm, we will give a new interpretation of the GLA and formulate the phase recovery problem in an optimization form. We then present some experimental results where the new algorithm is tested on various signals. It shows not only significant improvement in speed of convergence but it does as well recover the signals with a smaller error than the traditional GLA

    A fast Griffin-Lim algorithm

    Full text link

    Tacotron: Towards End-to-End Speech Synthesis

    Full text link
    A text-to-speech synthesis system typically consists of multiple stages, such as a text analysis frontend, an acoustic model and an audio synthesis module. Building these components often requires extensive domain expertise and may contain brittle design choices. In this paper, we present Tacotron, an end-to-end generative text-to-speech model that synthesizes speech directly from characters. Given pairs, the model can be trained completely from scratch with random initialization. We present several key techniques to make the sequence-to-sequence framework perform well for this challenging task. Tacotron achieves a 3.82 subjective 5-scale mean opinion score on US English, outperforming a production parametric system in terms of naturalness. In addition, since Tacotron generates speech at the frame level, it's substantially faster than sample-level autoregressive methods.Comment: Submitted to Interspeech 2017. v2 changed paper title to be consistent with our conference submission (no content change other than typo fixes

    Time-scale and pitch modifications of speech signals and resynthesis from the discrete short-time Fourier transform

    Get PDF
    The modification methods described in this paper combine characteristics of PSOLA-based methods and algorithms that resynthesize speech from its short-time Fourier magnitude only. The starting point is a short-time Fourier representation of the signal. In the case of duration modification, portions, in voiced speech corresponding to pitch periods, are removed from or inserted in this representation. In the case of pitch modification, pitch periods are shortened or extended in this representation, and a number of pitch periods is inserted or removed, respectively. Since it is an important tool for both duration and pitch modification, the resynthesis-from-short-time-Fourier-magnitude-only method of Griffin and Lim (1984) and Griffin et al. (1984) is reviewed and adapted. Duration and pitch modification methods and their results are presented.\ud \u
    • …
    corecore