86 research outputs found

    Open research issues on multi-models for complex technological systems

    Get PDF
    Abstract -We are going to report here about state of the art works on multi-models for complex technological systems both from the theoretical and practical point of view. A variety of algorithmic approaches (k-mean, dss, etc.) and applicative domains (wind farms, neurological diseases, etc.) are reported to illustrate the extension of the research area

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Advanced methods for safe visualization on automotive displays

    Get PDF
    Camera Monitor Systems (CMSs), for example, for backup cameras or mirror replacements, become increasingly important and already cover safety aspects such as guaranteed latency and no frame freeze. Today\u27s approaches deal only with supervision of the digital interface, LCD backlight, and power supply. This paper introduces methods for advanced safety monitoring of panel electronics and optical display output that aim to enable future CMS based automotive use cases. Our methods are based on correlation of physical measurements with predicted values derived from a corresponding display model. This model was made via calibration measurements and many test patterns. Correlation of the monitoring results with predicted values corresponds to the probability that the RGB data are shown as intended. This implies that an overlying system, an Automotive Safety Integrity Level (ASIL) Prepared Video Safety System (APVSS), ensures that only safety verified RGB data are provided to the panel electronics. In case of failures, our methods enable a safe system state, for example, by deactivating the panel. An additional challenge is to allow graceful degradations, a safe but slightly degraded image may provide a better customer experience compared with no information. We successfully verified our approach by a fully functional prototype and extensive evaluation towards “light-to-light” (camera to display output) supervision

    Novel Computational Methods for Integrated Circuit Reverse Engineering

    Get PDF
    Production of Integrated Circuits (ICs) has been largely strengthened by globalization. System-on-chip providers are capable of utilizing many different providers which can be responsible for a single task. This horizontal structure drastically improves to time-to-market and reduces manufacturing cost. However, untrust of oversea foundries threatens to dismantle the complex economic model currently in place. Many Intellectual Property (IP) consumers become concerned over what potentially malicious or unspecified logic might reside within their application. This logic which is inserted with the intention of causing harm to a consumer has been referred to as a Hardware Trojan (HT). To help IP consumers, researchers have looked into methods for finding HTs. Such methods tend to rely on high-level information relating to the circuit, which might not be accessible. There is a high possibility that IP is delivered in the gate or layout level. Some services and image processing methods can be leveraged to convert layout level information to gate-level, but such formats are incompatible with detection schemes that require hardware description language. By leveraging standard graph and dynamic programming algorithms a set of tools is developed that can help bridge the gap between gate-level netlist access and HT detection. To help in this endeavor this dissertation focuses on several problems associated with reverse engineering ICs. Logic signal identification is used to find malicious signals, and logic desynthesis is used to extract high level details. Each of the proposed method have their results analyzed for accuracy and runtime. It is found that method for finding logic tends to be the most difficult task, in part due to the degree of heuristic\u27s inaccuracy. With minor improvements moderate sized ICs could have their high-level function recovered within minutes, which would allow for a trained eye or automated methods to more easily detect discrepancies within a circuit\u27s design
    corecore