10,093 research outputs found

    Exploring Subtasks of Scene Understanding: Challenges and Cross-Modal Analysis

    Get PDF
    Scene understanding is one of the most important problems in computer vision. It consists of many subtasks such as image classification for describing an image with one word, object detection for finding and localizing objects of interest in the image and assigning a category to each of them, semantic segmentation for assigning a category to each pixel of an image, instance segmentation for finding and localizing objects of interest and marking all the pixels belonging to each object, depth estimation for estimating the distance of each pixel in the image from the camera, etc. Each of these tasks has its advantages and limitations. These tasks have a common goal to achieve that is to understand and describe a scene captured in an image or a set of images. One common question is if there is any synergy between these tasks. Therefore, alongside single task approaches, there is a line of research on how to learn multiple tasks jointly. In this thesis, we explore different subtasks of scene understanding and propose mainly deep learning-based approaches to improve these tasks. First, we propose a modular Convolutional Neural Network (CNN) architecture for jointly training semantic segmentation and depth estimation tasks. We provide a setup suitable to analyze the cross-modality influence between these tasks for different architecture designs. Then, we utilize object detection and instance segmentation as auxiliary tasks for focusing on target objects in complex tasks of scene flow estimation and object 6d pose estimation. Furthermore, we propose a novel deep approach for object co-segmentation which is the task of segmenting common objects in a set of images. Finally, we introduce a novel pooling layer that preserves the spatial information while capturing a large receptive field. This pooling layer is designed for improving the dense prediction tasks such as semantic segmentation and depth estimation

    Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review

    Get PDF
    The capabilities of autonomous mobile robotic systems have been steadily improving due to recent advancements in computer science, engineering, and related disciplines such as cognitive science. In controlled environments, robots have achieved relatively high levels of autonomy. In more unstructured environments, however, the development of fully autonomous mobile robots remains challenging due to the complexity of understanding these environments. Many autonomous mobile robots use classical, learning-based or hybrid approaches for navigation. More recent learning-based methods may replace the complete navigation pipeline or selected stages of the classical approach. For effective deployment, autonomous robots must understand their external environments at a sophisticated level according to their intended applications. Therefore, in addition to robot perception, scene analysis and higher-level scene understanding (e.g., traversable/non-traversable, rough or smooth terrain, etc.) are required for autonomous robot navigation in unstructured outdoor environments. This paper provides a comprehensive review and critical analysis of these methods in the context of their applications to the problems of robot perception and scene understanding in unstructured environments and the related problems of localisation, environment mapping and path planning. State-of-the-art sensor fusion methods and multimodal scene understanding approaches are also discussed and evaluated within this context. The paper concludes with an in-depth discussion regarding the current state of the autonomous ground robot navigation challenge in unstructured outdoor environments and the most promising future research directions to overcome these challenges

    TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments

    Full text link
    Deep neural networks (DNNs) have become core computation components within low latency Function as a Service (FaaS) prediction pipelines: including image recognition, object detection, natural language processing, speech synthesis, and personalized recommendation pipelines. Cloud computing, as the de-facto backbone of modern computing infrastructure for both enterprise and consumer applications, has to be able to handle user-defined pipelines of diverse DNN inference workloads while maintaining isolation and latency guarantees, and minimizing resource waste. The current solution for guaranteeing isolation within FaaS is suboptimal -- suffering from "cold start" latency. A major cause of such inefficiency is the need to move large amount of model data within and across servers. We propose TrIMS as a novel solution to address these issues. Our proposed solution consists of a persistent model store across the GPU, CPU, local storage, and cloud storage hierarchy, an efficient resource management layer that provides isolation, and a succinct set of application APIs and container technologies for easy and transparent integration with FaaS, Deep Learning (DL) frameworks, and user code. We demonstrate our solution by interfacing TrIMS with the Apache MXNet framework and demonstrate up to 24x speedup in latency for image classification models and up to 210x speedup for large models. We achieve up to 8x system throughput improvement.Comment: In Proceedings CLOUD 201

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved
    corecore