1,672 research outputs found

    Parametric, Secure and Compact Implementation of RSA on FPGA

    Get PDF
    We present a fast, efficient, and parameterized modular multiplier and a secure exponentiation circuit especially intended for FPGAs on the low end of the price range. The design utilizes dedicated block multipliers as the main functional unit and Block-RAM as storage unit for the operands. The adopted design methodology allows adjusting the number of multipliers, the radix used in the multipliers, and number of words to meet the system requirements such as available resources, precision and timing constraints. The architecture, based on the Montgomery modular multiplication algorithm, utilizes a pipelining technique that allows concurrent operation of hardwired multipliers. Our design completes 1020-bit and 2040-bit modular multiplications in 7.62 μs and 27.0 μs, respectively. The multiplier uses a moderate amount of system resources while achieving the best area-time product in literature. 2040-bit modular exponentiation engine can easily fit into Xilinx Spartan-3E 500; moreover the exponentiation circuit withstands known side channel attacks

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    Hierarchical N-Body problem on graphics processor unit

    Get PDF
    Galactic simulation is an important cosmological computation, and represents a classical N-body problem suitable for implementation on vector processors. Barnes-Hut algorithm is a hierarchical N-Body method used to simulate such galactic evolution systems. Stream processing architectures expose data locality and concurrency available in multimedia applications. On the other hand, there are numerous compute-intensive scientific or engineering applications that can potentially benefit from such computational and communication models. These applications are traditionally implemented on vector processors. Stream architecture based graphics processor units (GPUs) present a novel computational alternative for efficiently implementing such high-performance applications. Rendering on a stream architecture sustains high performance, while user-programmable modules allow implementing complex algorithms efficiently. GPUs have evolved over the years, from being fixed-function pipelines to user programmable processors. In this thesis, we focus on the implementation of Barnes-Hut algorithm on typical current-generation programmable GPUs. We exploit computation and communication requirements present in Barnes-Hut algorithm to expose their suitability for user-programmable GPUs. Our implementation of the Barnes-Hut algorithm is formulated as a fragment shader targeting the selected GPU. We discuss implementation details, design issues, results, and challenges encountered in programming the fragment shader

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    The AXIOM platform for next-generation cyber physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are widely used in many applications that require interactions between humans and their physical environment. These systems usually integrate a set of hardware-software components for optimal application execution in terms of performance and energy consumption. The AXIOM project (Agile, eXtensible, fast I/O Module), presented in this paper, proposes a hardware-software platform for CPS coupled with an easy parallel programming model and sufficient connectivity so that the performance can scale-up by adding multiple boards. AXIOM supports a task-based programming model based on OmpSs and leverages a high-speed, inexpensive communication interface called AXIOM-Link. The board also tightly couples the CPU with reconfigurable resources to accelerate portions of the applications. As case studies, AXIOM uses smart video surveillance, and smart home living applicationsThis work is partially supported by the European Union H2020 program through the AXIOM project (grant ICT-01-2014 GA 645496) and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). We also thank the Xilinx University Program for its hardware and software donations.Peer ReviewedPostprint (author's final draft
    corecore