143 research outputs found

    Perfect Secrecy Systems Immune to Spoofing Attacks

    Full text link
    We present novel perfect secrecy systems that provide immunity to spoofing attacks under equiprobable source probability distributions. On the theoretical side, relying on an existence result for tt-designs by Teirlinck, our construction method constructively generates systems that can reach an arbitrary high level of security. On the practical side, we obtain, via cyclic difference families, very efficient constructions of new optimal systems that are onefold secure against spoofing. Moreover, we construct, by means of tt-designs for large values of tt, the first near-optimal systems that are 5- and 6-fold secure as well as further systems with a feasible number of keys that are 7-fold secure against spoofing. We apply our results furthermore to a recently extended authentication model, where the opponent has access to a verification oracle. We obtain this way novel perfect secrecy systems with immunity to spoofing in the verification oracle model.Comment: 10 pages (double-column); to appear in "International Journal of Information Security

    Author index to volume 125 (1994)

    Get PDF

    Earth imaging with microsatellites: An investigation, design, implementation and in-orbit demonstration of electronic imaging systems for earth observation on-board low-cost microsatellites.

    Get PDF
    This research programme has studied the possibilities and difficulties of using 50 kg microsatellites to perform remote imaging of the Earth. The design constraints of these missions are quite different to those encountered in larger, conventional spacecraft. While the main attractions of microsatellites are low cost and fast response times, they present the following key limitations: Payload mass under 5 kg, Continuous payload power under 5 Watts, peak power up to 15 Watts, Narrow communications bandwidths (9.6 / 38.4 kbps), Attitude control to within 5°, No moving mechanics. The most significant factor is the limited attitude stability. Without sub-degree attitude control, conventional scanning imaging systems cannot preserve scene geometry, and are therefore poorly suited to current microsatellite capabilities. The foremost conclusion of this thesis is that electronic cameras, which capture entire scenes in a single operation, must be used to overcome the effects of the satellite's motion. The potential applications of electronic cameras, including microsatellite remote sensing, have erupted with the recent availability of high sensitivity field-array CCD (charge-coupled device) image sensors. The research programme has established suitable techniques and architectures necessary for CCD sensors, cameras and entire imaging systems to fulfil scientific/commercial remote sensing despite the difficult conditions on microsatellites. The author has refined these theories by designing, building and exploiting in-orbit five generations of electronic cameras. The major objective of meteorological scale imaging was conclusively demonstrated by the Earth imaging camera flown on the UoSAT-5 spacecraft in 1991. Improved cameras have since been carried by the KITSAT-1 (1992) and PoSAT-1 (1993) microsatellites. PoSAT-1 also flies a medium resolution camera (200 metres) which (despite complete success) has highlighted certain limitations of microsatellites for high resolution remote sensing. A reworked, and extensively modularised, design has been developed for the four camera systems deployed on the FASat-Alfa mission (1995). Based on the success of these missions, this thesis presents many recommendations for the design of microsatellite imaging systems. The novelty of this research programme has been the principle of designing practical camera systems to fit on an existing, highly restrictive, satellite platform, rather than conceiving a fictitious small satellite to support a high performance scanning imager. This pragmatic approach has resulted in the first incontestable demonstrations of the feasibility of remote sensing of the Earth from inexpensive microsatellites

    Spatiotemporal arrayed MIMO radar

    No full text
    In the last decade, Multiple Input Multiple Output (MIMO) radar has emerged as a leading candidate for stimulating major new advancement in radar theory. A fundamental challenge in MIMO radar is to identify a theoretical framework within which the radar system may be represented and analysed. In the relatively well-established field of Single Input Multiple Output (SIMO) array signal processing, this task has already been achieved using the array manifold (which is a geometric object that completely characterises the array system). A central objective of this thesis is therefore to bridge the gap between SIMO and MIMO by developing a manifold representation of the MIMO radar system. A new differential geometric framework, based on the complex Cartan matrix, is exploited in this thesis for characterising array manifold curves. New formulas are presented for recursively calculating the strictly orthonormal moving frame, U(s), and corresponding complex Cartan Matrix, C(s), for arbitrary array geometries. The circular approximation of the array manifold is derived under this new framework and compact closed-form expressions are provided for the popular uniform linear array geometry. Based on a number of approximations derived using the circular approximation of the array manifold, the performance capabilites of various popular detection and parameter estimation algorithms are investigated. The figure of merit "C" is then used to place these capabilities into the context of the theoretically ideal algorithm. The concept of a virtual SIMO array system is used as a basis for characterising the full MIMO radar configuration using a single equivalent response vector. By tracing out this response vector across the whole parameter space, a manifold is formed that fully characterises the MIMO radar system. In the important case of orthogonal transmit waveforms, the fundamental performance bounds of the MIMO radar system are studied. A space-time receiver architecture is proposed which exploits the virtual SIMO structure as part of a subspace-based joint Doppler, delay and direction of arrival (DOA) estimation framework. Due to the great computational burden of an exhaustive 3-parameter search, the joint Doppler-delay-DOA estimation is partitioned into an equivalent two-stage algorithm. The proposed approach is evaluated via computer simulation studies and shown to outperform existing methods.Open Acces

    The Second Annual International Space University Alumni Conference

    Get PDF
    The papers presented at the conference reflect the multidisciplinary nature of the International Space University (ISU) and its alumni. The first papers presented hold special relevance to the design projects, and cover such topics as lunar-based astronomical instrumentation, solar lunar power generation, habitation on the moon, and the legal issues governing multinational astronauts conducting research in space. The next set of papers cover various technical issues such as project success assessment, satellite networks and space station dynamics, thus reflecting the diverse backgrounds of the ISU alumni

    A family of perpendicular arrays achieving perfect 4-fold secrecy

    Get PDF

    Joe Pawsey and the Founding of Australian Radio Astronomy

    Get PDF
    This open access book is a biography of Joseph L. Pawsey. It examines not only his life but the birth and growth of the field of radio astronomy and the state of science itself in twentieth century Australia. The book explains how an isolated continent with limited resources grew to be one of the leaders in the study of radio astronomy and the design of instruments to do so. Pawsey made a name for himself in the international astronomy community within a decade after WWII and coined the term radio astronomy. His most valuable talent was his ability to recruit and support bright young scientists who became the technical and methodological innovators of the era, building new telescopes from the Mills Cross and Chris (Christiansen) Cross to the Parkes radio telescope. The development of aperture synthesis and the controversy surrounding the cosmological interpretation of the first major survey which resulted in the Sydney research group's disagreements with Nobel laureate Martin Ryle play major roles in this story. This book also shows the connections among prominent astronomers like Oort, Minkowski, Baade, Struve, famous scientists in the UK such as J.A. Ratcliffe, Edward Appleton and Henry Tizard, and the engineers and physicists in Australia who helped develop the field of radio astronomy. Pawsey was appointed the second Director of the National Radio Astronomy Observatory (Green Bank, West Virginia) in October 1961; he died in Sydney at the age of 54 in late November 1962. Upper level students, scientists and historians will find the information, much of it from primary sources, relevant to any study of Joseph L. Pawsey or radio astronomy. This is an open access book
    corecore