790 research outputs found

    Semilocal convergence of a family of iterative methods in Banach spaces

    Full text link
    [EN] In this work, we prove a third and fourth convergence order result for a family of iterative methods for solving nonlinear systems in Banach spaces. We analyze the semilocal convergence by using recurrence relations, giving the existence and uniqueness theorem that establishes the R-order of the method and the priori error bounds. Finally, we apply the methods to two examples in order to illustrate the presented theory.This work has been supported by Ministerio de Ciencia e Innovaci´on MTM2011-28636-C02-02 and by Vicerrectorado de Investigaci´on. Universitat Polit`ecnica de Val`encia PAID-SP-2012-0498Hueso Pagoaga, JL.; Martínez Molada, E. (2014). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms. 67(2):365-384. https://doi.org/10.1007/s11075-013-9795-7S365384672Traub, J.F.: Iterative Methods for the Solution of Nonlinear Equations. Prentice Hall, New York (1964)Kantorovich, L.V.: On the newton method for functional equations. Doklady Akademii Nauk SSSR 59, 1237–1240 (1948)Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, I: The Halley method. Computing 44, 169–184 (1990)Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, II: The Chebyshev method. Computing 45, 355–367 (1990)Hernández, M.A.: Reduced recurrence relations for the Chebyshev method. J. Optim. Theory Appl. 98, 385–397 (1998)Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for super-Halley method. J. Comput. Math. Appl. 7, 1–8 (1998)Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-like methods. Appl. Math. Optim. 41, 227–236 (2000)Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)Argyros, I., K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev Secant-type methods. J. Comput. Appl. Math. 235–10, 3195–3206 (2011)Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newtons method. J. Complex. 28(3), 364–387 (2012)Wang, X., Gu, C., Kou, J.: Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algoritm. 54, 497–516 (2011)Kou, J., Li, Y., Wang, X.: A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007)Zheng, L., Gu, C.: Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algoritm. 59, 623–638 (2012)Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algoritm. 57, 441–456 (2011)Hernández, M.A.: The newton method for operators with hlder continuous first derivative. J. Optim. Appl. 109, 631–648 (2001)Ye, X., Li, C.: Convergence of the family of the deformed Euler-Halley iterations under the Hlder condition of the second derivative. J. Comput. Appl. Math. 194, 294–308 (2006)Zhao, Y., Wu, Q.: Newton-Kantorovich theorem for a family of modified Halleys method under Hlder continuity conditions in Banach spaces. Appl. Math. Comput. 202, 243–251 (2008)Argyros, I.K.: Improved generalized differentiability conditions for Newton-like methods. J. Complex. 26, 316–333 (2010)Hueso, J.L., Martínez. E., Torregrosa, J.R.: Third and fourth order iterative methods free from second derivative for nonlinear systems. Appl. Math. Comput. 211, 190–197 (2009)Taylor, A.Y., Lay, D.: Introduction to Functional Analysis, 2nd edn.New York, Wiley (1980)Jarrat, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)Cordero, A., Torregrosa, J.R.: Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007

    Local convergence of a family of iterative methods for Hammerstein equations

    Full text link
    [EN] In this paper we give a local convergence result for a uniparametric family of iterative methods for nonlinear equations in Banach spaces. We assume boundedness conditions involving only the first Fr,chet derivative, instead of using boundedness conditions for high order derivatives as it is usual in studies of semilocal convergence, which is a drawback for solving some practical problems. The existence and uniqueness theorem that establishes the convergence balls of these methods is obtained. We apply this theory to different examples, including a nonlinear Hammerstein equation that have many applications in chemistry and appears in problems of electro-magnetic fluid dynamics or in the kinetic theory of gases. With these examples we illustrate the advantages of these results. The global convergence of the method is addressed by analysing the behaviour of the methods on complex polynomials of second degree.This research was supported by Ministerio de Ciencia y Tecnologia MTM2014-52016-C2-02.This research was supported by Ministerio de Ciencia y Tecnología MTM2014-52016-C2-02.Martínez Molada, E.; Singh, S.; Hueso Pagoaga, JL.; Gupta, D. (2016). Local convergence of a family of iterative methods for Hammerstein equations. Journal of Mathematical Chemistry. 54(7):1370-1386. https://doi.org/10.1007/s10910-016-0602-2S13701386547I.K. Argyros, S. Hilout, M.A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering (Nova Publishers, New York, 2011)J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1964)A.M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces (Academic Press, New York, 1973)I.K. Argyros, J.A. Ezquerro, J.M. Gutiárrez, M.A. Hernández, S. Hilout, On the semilocal convergence of efficient ChebyshevSecant-type methods. J. Comput. Appl. Math. 235, 3195–3206 (2011)José L. Hueso, E. Martínez, Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)X. Wang, C. Gu, J. Kou, Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algorithms 54, 497–516 (2011)J. Kou, Y. Li, X. Wang, A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007)L. Zheng, C. Gu, Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)S. Amat, M.A. Hernández, N. Romero, A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)X. Wang, J. Kou, C. Gu, Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)A. Cordero, J.A. Ezquerro, M.A. Hernández-Verón, J.R. Torregrosa, On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)I.K. Argyros, S. Hilout, On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)X. Feng, Y. He, High order oterative methods without derivatives for solving nonlinear equations. Appl. Math. Comput. 186, 1617–1623 (2007)X. Wang, J. Kou, Y. Li, Modified Jarratt method with sixth-order convergence. Appl. Math. Lett. 22, 1798–1802 (2009)A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations (CRC Press, Boca Raton, 1998)S. Plaza, N. Romero, Attracting cycles for the relaxed Newton’s method. J. Comput. Appl. Math. 235(10), 3238–3244 (2011)A. Cordero, J.R. Torregrosa, P. Vindel, Study of the dynamics of third-order iterative methods on quadratic polynomials. Int. J. Comput. Math. 89(13–14), 1826–1836 (2012)Gerardo Honorato, Sergio Plaza, Natalia Romero, Dynamics of a higher-order family of iterative methods. J. Complex. 27(2), 221–229 (2011)J.M. Gutirrez, M.A. Hernández, N. Romero, Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233(10), 2688–2695 (2010)I.K. Argyros, A.A. Magreñan, A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms. doi: 10.1007/s11075-015-9981-xI.K. Argyros, S. George, Local convergence of modified Halley-like methods with less computation of inversion (Novi Sad J. Math, Draft version, 2015

    Basins of attraction for several methods to find simple roots of nonlinear equations

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1016/j.amc.2010.04.017There are many methods for solving a nonlinear algebraic equation. The methods are clas- sified by the order, informational efficiency and efficiency index. Here we consider other criteria, namely the basin of attraction of the method and its dependence on the order. We discuss several third and fourth order methods to find simple zeros. The relationship between the basins of attraction and the corresponding conjugacy maps will be discussed in numerical experiments. The effect of the extraneous roots on the basins is also discussed

    Two New Predictor-Corrector Iterative Methods with Third- and Ninth-Order Convergence for Solving Nonlinear Equations

    Get PDF
    In this paper, we suggest and analyze two new predictor-corrector iterative methods with third and ninth-order convergence for solving nonlinear equations. The first method is a development of [M. A. Noor, K. I. Noor and K. Aftab, Some New Iterative Methods for Solving Nonlinear Equations, World Applied Science Journal, 20(6),(2012):870-874.] based on the trapezoidal integration rule and the centroid mean. The second method is an improvement of the first new proposed method by using the technique of updating the solution. The order of convergence and corresponding error equations of new proposed methods are proved. Several numerical examples are given to illustrate the efficiency and performance of these new methods and compared them with the Newton's method and other relevant iterative methods. Keywords: Nonlinear equations, Predictor–corrector methods, Trapezoidal integral rule, Centroid mean, Technique of updating the solution; Order of convergence

    Extending the applicability of a fourth-order method under Lipschitz continuous derivative in Banach spaces

    Get PDF
    We extend the applicability of a fourth-order convergent nonlinear system solver by providing its local convergence analysis under Lipschitz continuous Fréchet derivative in Banach spaces. Our analysis only uses the first-order Fréchet derivative to ensure the convergence and provides the uniqueness of the solution, the radius of convergence ball and the computable error bounds. This study is applicable in solving such problems for which earlier studies are not effective. Furthermore, the convergence region for the scheme to approximate the zeros of various polynomials is studied using basins of attraction tool. Various computational tests are conducted to validate that our analysis is beneficial when prior studies fail to solve problems.The first author has been supported by the University Grants Commission, India.Publisher's Versio

    A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots

    Full text link
    [EN] The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev¿Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for ¿ = 2,which corresponds to an optimal method in the sense of Kung and Traub¿s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under Grant MTM2014-52016-C2-1-2-P and by the project of Generalitat Valenciana Prometeo/2016/089Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alarcon-Correa, D. (2019). A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots. Mathematics. 7(4):1-12. https://doi.org/10.3390/math7040339S11274Gutiérrez, J. M., & Hernández, M. A. (1997). A family of Chebyshev-Halley type methods in Banach spaces. Bulletin of the Australian Mathematical Society, 55(1), 113-130. doi:10.1017/s0004972700030586Kanwar, V., Singh, S., & Bakshi, S. (2008). Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations. Numerical Algorithms, 47(1), 95-107. doi:10.1007/s11075-007-9149-4Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Xiaojian, Z. (2008). Modified Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 203(2), 824-827. doi:10.1016/j.amc.2008.05.092Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Kou, J., & Li, Y. (2007). Modified Chebyshev–Halley methods with sixth-order convergence. Applied Mathematics and Computation, 188(1), 681-685. doi:10.1016/j.amc.2006.10.018Li, D., Liu, P., & Kou, J. (2014). An improvement of Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 235, 221-225. doi:10.1016/j.amc.2014.02.083Sharma, J. R. (2015). Improved Chebyshev–Halley methods with sixth and eighth order convergence. Applied Mathematics and Computation, 256, 119-124. doi:10.1016/j.amc.2015.01.002Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Behl, R., Alshomrani, A. S., & Motsa, S. S. (2018). An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. Journal of Mathematical Chemistry, 56(7), 2069-2084. doi:10.1007/s10910-018-0857-xMcNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06
    • …
    corecore