39,811 research outputs found

    Strong Amplifiers of Natural Selection: Proofs

    Get PDF
    We consider the modified Moran process on graphs to study the spread of genetic and cultural mutations on structured populations. An initial mutant arises either spontaneously (aka \emph{uniform initialization}), or during reproduction (aka \emph{temperature initialization}) in a population of nn individuals, and has a fixed fitness advantage r>1r>1 over the residents of the population. The fixation probability is the probability that the mutant takes over the entire population. Graphs that ensure fixation probability of~1 in the limit of infinite populations are called \emph{strong amplifiers}. Previously, only a few examples of strong amplifiers were known for uniform initialization, whereas no strong amplifiers were known for temperature initialization. In this work, we study necessary and sufficient conditions for strong amplification, and prove negative and positive results. We show that for temperature initialization, graphs that are unweighted and/or self-loop-free have fixation probability upper-bounded by 1−1/f(r)1-1/f(r), where f(r)f(r) is a function linear in rr. Similarly, we show that for uniform initialization, bounded-degree graphs that are unweighted and/or self-loop-free have fixation probability upper-bounded by 1−1/g(r,c)1-1/g(r,c), where cc is the degree bound and g(r,c)g(r,c) a function linear in rr. Our main positive result complements these negative results, and is as follows: every family of undirected graphs with (i)~self loops and (ii)~diameter bounded by n1−ϔn^{1-\epsilon}, for some fixed Ï”>0\epsilon>0, can be assigned weights that makes it a strong amplifier, both for uniform and temperature initialization

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Random Topologies and the emergence of cooperation: the role of short-cuts

    Get PDF
    We study in detail the role of short-cuts in promoting the emergence of cooperation in a network of agents playing the Prisoner's Dilemma Game (PDG). We introduce a model whose topology interpolates between the one-dimensional euclidean lattice (a ring) and the complete graph by changing the value of one parameter (the probability p to add a link between two nodes not already connected in the euclidean configuration). We show that there is a region of values of p in which cooperation is largely enhanced, whilst for smaller values of p only a few cooperators are present in the final state, and for p \rightarrow 1- cooperation is totally suppressed. We present analytical arguments that provide a very plausible interpretation of the simulation results, thus unveiling the mechanism by which short-cuts contribute to promote (or suppress) cooperation

    Batch kernel SOM and related Laplacian methods for social network analysis

    Get PDF
    Large graphs are natural mathematical models for describing the structure of the data in a wide variety of fields, such as web mining, social networks, information retrieval, biological networks, etc. For all these applications, automatic tools are required to get a synthetic view of the graph and to reach a good understanding of the underlying problem. In particular, discovering groups of tightly connected vertices and understanding the relations between those groups is very important in practice. This paper shows how a kernel version of the batch Self Organizing Map can be used to achieve these goals via kernels derived from the Laplacian matrix of the graph, especially when it is used in conjunction with more classical methods based on the spectral analysis of the graph. The proposed method is used to explore the structure of a medieval social network modeled through a weighted graph that has been directly built from a large corpus of agrarian contracts

    A statistical network analysis of the HIV/AIDS epidemics in Cuba

    Get PDF
    The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globally low but heterogeneous density, with clusters of high intraconnectivity but low interconnectivity. Though descriptive, our results pave the way for incorporating structure when studying stochastic SIR epidemics spreading on social networks
    • 

    corecore