14,388 research outputs found

    Semi-classical Laguerre polynomials and a third order discrete integrable equation

    Full text link
    A semi-discrete Lax pair formed from the differential system and recurrence relation for semi-classical orthogonal polynomials, leads to a discrete integrable equation for a specific semi-classical orthogonal polynomial weight. The main example we use is a semi-classical Laguerre weight to derive a third order difference equation with a corresponding Lax pair.Comment: 11 page

    The semiclassical--Sobolev orthogonal polynomials: a general approach

    Get PDF
    We say that the polynomial sequence (Qn(λ))(Q^{(\lambda)}_n) is a semiclassical Sobolev polynomial sequence when it is orthogonal with respect to the inner product S=+λ<u,DpDr>, _S= +\lambda <{{\bf u}}, {{\mathscr D}p \,{\mathscr D}r}>, where u{\bf u} is a semiclassical linear functional, D{\mathscr D} is the differential, the difference or the qq--difference operator, and λ\lambda is a positive constant. In this paper we get algebraic and differential/difference properties for such polynomials as well as algebraic relations between them and the polynomial sequence orthogonal with respect to the semiclassical functional u\bf u. The main goal of this article is to give a general approach to the study of the polynomials orthogonal with respect to the above nonstandard inner product regardless of the type of operator D{\mathscr D} considered. Finally, we illustrate our results by applying them to some known families of Sobolev orthogonal polynomials as well as to some new ones introduced in this paper for the first time.Comment: 23 pages, special issue dedicated to Professor Guillermo Lopez lagomasino on the occasion of his 60th birthday, accepted in Journal of Approximation Theor

    Orthogonal Polynomials from Hermitian Matrices II

    Get PDF
    This is the second part of the project `unified theory of classical orthogonal polynomials of a discrete variable derived from the eigenvalue problems of hermitian matrices.' In a previous paper, orthogonal polynomials having Jackson integral measures were not included, since such measures cannot be obtained from single infinite dimensional hermitian matrices. Here we show that Jackson integral measures for the polynomials of the big qq-Jacobi family are the consequence of the recovery of self-adjointness of the unbounded Jacobi matrices governing the difference equations of these polynomials. The recovery of self-adjointness is achieved in an extended 2\ell^2 Hilbert space on which a direct sum of two unbounded Jacobi matrices acts as a Hamiltonian or a difference Schr\"odinger operator for an infinite dimensional eigenvalue problem. The polynomial appearing in the upper/lower end of Jackson integral constitutes the eigenvector of each of the two unbounded Jacobi matrix of the direct sum. We also point out that the orthogonal vectors involving the qq-Meixner (qq-Charlier) polynomials do not form a complete basis of the 2\ell^2 Hilbert space, based on the fact that the dual qq-Meixner polynomials introduced in a previous paper fail to satisfy the orthogonality relation. The complete set of eigenvectors involving the qq-Meixner polynomials is obtained by constructing the duals of the dual qq-Meixner polynomials which require the two component Hamiltonian formulation. An alternative solution method based on the closure relation, the Heisenberg operator solution, is applied to the polynomials of the big qq-Jacobi family and their duals and qq-Meixner (qq-Charlier) polynomials.Comment: 65 pages. Comments, references and table of contents are added. To appear in J.Math.Phy

    Semi-classical Orthogonal Polynomial Systems on Non-uniform Lattices, Deformations of the Askey Table and Analogs of Isomonodromy

    Full text link
    A D\mathbb{D}-semi-classical weight is one which satisfies a particular linear, first order homogeneous equation in a divided-difference operator D\mathbb{D}. It is known that the system of polynomials, orthogonal with respect to this weight, and the associated functions satisfy a linear, first order homogeneous matrix equation in the divided-difference operator termed the spectral equation. Attached to the spectral equation is a structure which constitutes a number of relations such as those arising from compatibility with the three-term recurrence relation. Here this structure is elucidated in the general case of quadratic lattices. The simplest examples of the D\mathbb{D}-semi-classical orthogonal polynomial systems are precisely those in the Askey table of hypergeometric and basic hypergeometric orthogonal polynomials. However within the D\mathbb{D}-semi-classical class it is entirely natural to define a generalisation of the Askey table weights which involve a deformation with respect to new deformation variables. We completely construct the analogous structures arising from such deformations and their relations with the other elements of the theory. As an example we treat the first non-trivial deformation of the Askey-Wilson orthogonal polynomial system defined by the qq-quadratic divided-difference operator, the Askey-Wilson operator, and derive the coupled first order divided-difference equations characterising its evolution in the deformation variable. We show that this system is a member of a sequence of classical solutions to the E7(1) E^{(1)}_7 qq-Painlev\'e system.Comment: Submitted to Duke Mathematical Journal on 5th April 201

    Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials

    Full text link
    Eigenvalues and eigenfunctions of the volume operator, associated with the symmetric coupling of three SU(2) angular momentum operators, can be analyzed on the basis of a discrete Schroedinger-like equation which provides a semiclassical Hamiltonian picture of the evolution of a `quantum of space', as shown by the authors in a recent paper. Emphasis is given here to the formalization in terms of a quadratic symmetry algebra and its automorphism group. This view is related to the Askey scheme, the hierarchical structure which includes all hypergeometric polynomials of one (discrete or continuous) variable. Key tool for this comparative analysis is the duality operation defined on the generators of the quadratic algebra and suitably extended to the various families of overlap functions (generalized recoupling coefficients). These families, recognized as lying at the top level of the Askey scheme, are classified and a few limiting cases are addressed.Comment: 10 pages, talk given at "Physics and Mathematics of Nonlinear Phenomena" (PMNP2013), to appear in J. Phys. Conf. Serie

    The Symmetrical HqH_{q}-Semiclassical Orthogonal Polynomials of Class One

    Get PDF
    We investigate the quadratic decomposition and duality to classify symmetrical HqH_{q}-semiclassical orthogonal qq-polynomials of class one where HqH_{q} is the Hahn's operator. For any canonical situation, the recurrence coefficients, the qq-analog of the distributional equation of Pearson type, the moments and integral or discrete representations are given

    Bannai-Ito polynomials and dressing chains

    Full text link
    Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.Comment: 15 pages; Section 2 is slightly modified and a few typos are correcte
    corecore