65 research outputs found

    Discriminative, generative, and imitative learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (leaves 201-212).I propose a common framework that combines three different paradigms in machine learning: generative, discriminative and imitative learning. A generative probabilistic distribution is a principled way to model many machine learning and machine perception problems. Therein, one provides domain specific knowledge in terms of structure and parameter priors over the joint space of variables. Bayesian networks and Bayesian statistics provide a rich and flexible language for specifying this knowledge and subsequently refining it with data and observations. The final result is a distribution that is a good generator of novel exemplars. Conversely, discriminative algorithms adjust a possibly non-distributional model to data optimizing for a specific task, such as classification or prediction. This typically leads to superior performance yet compromises the flexibility of generative modeling. I present Maximum Entropy Discrimination (MED) as a framework to combine both discriminative estimation and generative probability densities. Calculations involve distributions over parameters, margins, and priors and are provably and uniquely solvable for the exponential family. Extensions include regression, feature selection, and transduction. SVMs are also naturally subsumed and can be augmented with, for example, feature selection, to obtain substantial improvements. To extend to mixtures of exponential families, I derive a discriminative variant of the Expectation-Maximization (EM) algorithm for latent discriminative learning (or latent MED).(cont.) While EM and Jensen lower bound log-likelihood, a dual upper bound is made possible via a novel reverse-Jensen inequality. The variational upper bound on latent log-likelihood has the same form as EM bounds, is computable efficiently and is globally guaranteed. It permits powerful discriminative learning with the wide range of contemporary probabilistic mixture models (mixtures of Gaussians, mixtures of multinomials and hidden Markov models). We provide empirical results on standardized data sets that demonstrate the viability of the hybrid discriminative-generative approaches of MED and reverse-Jensen bounds over state of the art discriminative techniques or generative approaches. Subsequently, imitative learning is presented as another variation on generative modeling which also learns from exemplars from an observed data source. However, the distinction is that the generative model is an agent that is interacting in a much more complex surrounding external world. It is not efficient to model the aggregate space in a generative setting. I demonstrate that imitative learning (under appropriate conditions) can be adequately addressed as a discriminative prediction task which outperforms the usual generative approach. This discriminative-imitative learning approach is applied with a generative perceptual system to synthesize a real-time agent that learns to engage in social interactive behavior.by Tony Jebara.Ph.D

    Scalable Inference for Multi-Target Tracking of Proliferating Cells

    Get PDF
    With the continuous advancements in microscopy techniques such as improved image quality, faster acquisition and reduced photo-toxicity, the amount of data recorded in the life sciences is rapidly growing. Clearly, the size of the data renders manual analysis intractable, calling for automated cell tracking methods. Cell tracking – in contrast to other tracking scenarios – exhibits several difficulties: low signal to noise ratio in the images, high cell density and sometimes cell clusters, radical morphology changes, but most importantly cells divide – which is often the focus of the experiment. These peculiarities have been targeted by tracking-byassignment methods that first extract a set of detection hypotheses and then track those over time. Improving the general quality of these cell tracking methods is difficult, because every cell type, surrounding medium, and microscopy setting leads to recordings with specific properties and problems. This unfortunately implies that automated approaches will not become perfect any time soon but manual proof reading by experts will remain necessary for the time being. In this thesis we focus on two different aspects, firstly on scaling previous and developing new solvers to deal with longer videos and more cells, and secondly on developing a specialized pipeline for detecting and tracking tuberculosis bacteria. The most powerful tracking-by-assignment methods are formulated as probabilistic graphical models and solved as integer linear programs. Because those integer linear programs are in general NP-hard, increasing the problem size will lead to an explosion of computational cost. We begin by reformulating one of these models in terms of a constrained network flow, and show that it can be solved more efficiently. Building on the successful application of network flow algorithms in the pedestrian tracking literature, we develop a heuristic to integrate constraints – here for divisions – into such a network flow method. This allows us to obtain high quality approximations to the tracking solution while providing a polynomial runtime guarantee. Our experiments confirm this much better scaling behavior to larger problems. However, this approach is single threaded and does not utilize available resources of multi-core machines yet. To parallelize the tracking problem we present a simple yet effective way of splitting long videos into intervals that can be tracked independently, followed by a sparse global stitching step that resolves disagreements at the cuts. Going one step further, we propose a microservices based software design for ilastik that allows to distribute all required computation for segmentation, object feature extraction, object classification and tracking across the nodes of a cluster or in the cloud. Finally, we discuss the use case of detecting and tracking tuberculosis bacteria in more detail, because no satisfying automated method to this important problem existed before. One peculiarity of these elongated cells is that they build dense clusters in which it is hard to outline individuals. To cope with that we employ a tracking-by-assignment model that allows competing detection hypotheses and selects the best set of detections while considering the temporal context during tracking. To obtain these hypotheses, we develop a novel algorithm that finds diverseM- best solutions of tree-shaped graphical models by dynamic programming. First experiments with the pipeline indicate that it can greatly reduce the required amount of human intervention for analyzing tuberculosis treatment

    Threat assessment for safe navigation in environments with uncertainty in predictability

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 213-224).This thesis develops threat assessment algorithms to improve the safety of the decision making of autonomous and human-operated vehicles navigating in dynamic and uncertain environments, where the source of uncertainty is in the predictability of the nearby vehicles' future trajectories. The first part of the thesis introduces two classes of algorithms to classify drivers behaviors at roads intersections based on Support Vector Machines (SVM) and Hidden Markov Models (HMM). These algorithms are successfully validated using a large real-world intersection dataset, and can be used as part of future driver assistance systems. They are also compared to three popular traditional methods, and the results show significant and consistent improvements with the developed algorithms. The second part of the thesis presents an efficient trajectory prediction algorithm that has been developed to improve the performance of future collision avoidance and detection systems. The proposed approach, RR-GP, combines the Rapidly-exploring Random Trees (RRT) based algorithm, RRT-Reach, with mixtures of Gaussian Processes (GP) to compute dynamically feasible paths, in real-time, while embedding the flexibility of GP's nonparametric Bayesian model. RR-GP efficiently approximates the reachability sets of surrounding vehicles, and is shown in simulation and on naturalistic data to improve the performance over two standard GP-based algorithms. The third part introduces new path planning algorithms that build upon the tools that have been previously introduced in this thesis. The focus is on safe autonomous navigation in the presence of other vehicles with uncertain motion patterns. First, it presents a new threat assessment module (TAM) that combines the RRT-Reach algorithm with an SVM-based intention predictor, to develop a threat-aware path planner. The strengths of this approach are demonstrated through simulation and experiments performed in the MIT RAVEN testbed. Second, another novel path planning technique is developed by integrating the RR-GP trajectory prediction algorithm with a state-of-the-art chance-constrained RRT planner. This framework provides several theoretical guarantees on the probabilistic satisfaction of collision avoidance constraints. Extensive simulation results show that the resulting approach can be used in real-time to efficiently and accurately execute safe paths. The last part of the thesis considers the decision-making problem for a human-driven vehicle crossing a road intersection in the presence of other, potentially errant, drivers. The proposed approach uses the TAM framework to compute the threat level in real-time, and provides the driver with a warning signal and the best escape maneuver through the intersection. Experimental results with small autonomous and human-driven vehicles in the RAVEN testbed demonstrate that this approach can be successfully used in real-time to minimize the risk of collision in urban-like environments.by Georges Salim Aoudé.Ph.D

    Combination Strategies for Semantic Role Labeling

    Full text link
    This paper introduces and analyzes a battery of inference models for the problem of semantic role labeling: one based on constraint satisfaction, and several strategies that model the inference as a meta-learning problem using discriminative classifiers. These classifiers are developed with a rich set of novel features that encode proposition and sentence-level information. To our knowledge, this is the first work that: (a) performs a thorough analysis of learning-based inference models for semantic role labeling, and (b) compares several inference strategies in this context. We evaluate the proposed inference strategies in the framework of the CoNLL-2005 shared task using only automatically-generated syntactic information. The extensive experimental evaluation and analysis indicates that all the proposed inference strategies are successful -they all outperform the current best results reported in the CoNLL-2005 evaluation exercise- but each of the proposed approaches has its advantages and disadvantages. Several important traits of a state-of-the-art SRL combination strategy emerge from this analysis: (i) individual models should be combined at the granularity of candidate arguments rather than at the granularity of complete solutions; (ii) the best combination strategy uses an inference model based in learning; and (iii) the learning-based inference benefits from max-margin classifiers and global feedback

    The 2011 International Planning Competition

    Get PDF
    After a 3 years gap, the 2011 edition of the IPC involved a total of 55 planners, some of them versions of the same planner, distributed among four tracks: the sequential satisficing track (27 planners submitted out of 38 registered), the sequential multicore track (8 planners submitted out of 12 registered), the sequential optimal track (12 planners submitted out of 24 registered) and the temporal satisficing track (8 planners submitted out of 14 registered). Three more tracks were open to participation: temporal optimal, preferences satisficing and preferences optimal. Unfortunately the number of submitted planners did not allow these tracks to be finally included in the competition. A total of 55 people were participating, grouped in 31 teams. Participants came from Australia, Canada, China, France, Germany, India, Israel, Italy, Spain, UK and USA. For the sequential tracks 14 domains, with 20 problems each, were selected, while the temporal one had 12 domains, also with 20 problems each. Both new and past domains were included. As in previous competitions, domains and problems were unknown for participants and all the experimentation was carried out by the organizers. To run the competition a cluster of eleven 64-bits computers (Intel XEON 2.93 Ghz Quad core processor) using Linux was set up. Up to 1800 seconds, 6 GB of RAM memory and 750 GB of hard disk were available for each planner to solve a problem. This resulted in 7540 computing hours (about 315 days), plus a high number of hours devoted to preliminary experimentation with new domains, reruns and bugs fixing. The detailed results of the competition, the software used for automating most tasks, the source code of all the participating planners and the description of domains and problems can be found at the competition’s web page: http://www.plg.inf.uc3m.es/ipc2011-deterministicThis booklet summarizes the participants on the Deterministic Track of the International Planning Competition (IPC) 2011. Papers describing all the participating planners are included

    Learning classifier systems from first principles

    Get PDF

    Robust handling of out-of-vocabulary words in deep language processing

    Get PDF
    Tese de doutoramento, Informática (Ciências da Computação), Universidade de Lisboa, Faculdade de Ciências, 2014Deep grammars handle with precision complex grammatical phenomena and are able to provide a semantic representation of their input sentences in some logic form amenable to computational processing, making such grammars desirable for advanced Natural Language Processing tasks. The robustness of these grammars still has room to be improved. If any of the words in a sentence is not present in the lexicon of the grammar, i.e. if it is an out-of-vocabulary (OOV) word, a full parse of that sentence may not be produced. Given that the occurrence of such words is inevitable, e.g. due to the property of lexical novelty that is intrinsic to natural languages, deep grammars need some mechanism to handle OOV words if they are to be used in applications to analyze unrestricted text. The aim of this work is thus to investigate ways of improving the handling of OOV words in deep grammars. The lexicon of a deep grammar is highly thorough, with words being assigned extremely detailed linguistic information. Accurately assigning similarly detailed information to OOV words calls for the development of novel approaches, since current techniques mostly rely on shallow features and on a limited window of context, while there are many cases where the relevant information is to be found in wider linguistic structure and in long-distance relations. The solution proposed here consists of a classifier, SVM-TK, that is placed between the input to the grammar and the grammar itself. This classifier can take a variety of features and assign to words deep lexical types which can then be used by the grammar when faced with OOV words. The classifier is based on support-vector machines which, through the use of kernels, allows the seamless use of features encoding linguistic structure in the classifier. This dissertation focuses on the HPSG framework, but the method can be used in any framework where the lexical information can be encoded as a word tag. As a case study, we take LX-Gram, a computational grammar for Portuguese, to improve its robustness with respect to OOV verbs. Given that the subcategorization frame of a word is a substantial part of what is encoded in an HPSG deep lexical type, the classifier takes graph encoding grammatical dependencies as features. At runtime, these dependencies are produced by a probabilistic dependency parser. The SVM-TK classifier is compared against the state-of-the-art approaches for OOV handling, which consist of using a standard POS-tagger to assign lexical types, in essence doing POS-tagging with a highly granular tagset. Results show that SVM-TK is able to improve on the state-of-the-art, with the usual data-sparseness bottleneck issues imposing this to happen when the amount of training data is large enough.As gramáticas de processamento profundo lidam de forma precisa com fenómenos linguisticos complexos e são capazes de providenciar uma representação semântica das frases que lhes são dadas, o que torna tais gramáticas desejáveis para tarefas avançadas em Processamento de Linguagem Natural. A robustez destas gramáticas tem ainda espaço para ser melhorada. Se alguma das palavras numa frase não se encontra presente no léxico da gramática (em inglês, uma palavra out-of-vocabulary, ou OOV), pode não ser possível produzir uma análise completa dessa frase. Dado que a ocorrência de tais palavras é algo inevitável, e.g. devido à novidade lexical que é intrínseca às línguas naturais, as gramáticas profundas requerem algum mecanismo que lhes permita lidar com palavras OOV de forma a que possam ser usadas para análise de texto em aplicações. O objectivo deste trabalho é então investigar formas de melhor lidar com palavras OOV numa gramática de processamento profundo. O léxico de uma gramática profunda é altamente granular, sendo cada palavra associada com informação linguística extremamente detalhada. Atribuir corretamente a palavras OOV informação linguística com o nível de detalhe adequado requer que se desenvolvam técnicas inovadoras, dado que as abordagens atuais baseiam-se, na sua maioria, em características superficiais (shallow features) e em janelas de contexto limitadas, apesar de haver muitos casos onde a informação relevante se encontra na estrutura linguística e em relações de longa distância. A solução proposta neste trabalho consiste num classificador, SVM-TK, que é colocado entre o input da gramática e a gramática propriamente dita. Este classificador aceita uma variedade de features e atribui às palavras tipos lexicais profundos que podem então ser usado pela gramática sempre que esta se depare com palavras OOV. O classificador baseia-se em máquinas de vetores de suporte (support-vector machines). Esta técnica, quando combinada com o uso de kernels, permite que o classificador use, de forma transparente, features que codificam estrutura linguística. Esta dissertação foca-se no enquadramento teórico HPSG, embora o método proposto possa ser usado em qualquer enquadramento onde a informação lexical possa ser codificada sob a forma de uma etiqueta atribuída a uma palavra. Como caso de estudo, usamos a LX-Gram, uma gramatica computacional para a língua portuguesa, e melhoramos a sua robustez a verbos OOV. Dado que a grelha de subcategorização de uma palavra é uma parte substancial daquilo que se encontra codificado num tipo lexical profundo em HPSG, o classificador usa features baseados em dependências gramaticais. No momento de execução, estas dependências são produzidas por um analisador de dependências probabilístico. O classificador SVM-TK é comparado com o estado-da-arte para a tarefa de resolução de palavras OOV, que consiste em usar um anotador morfossintático (POS-tagger) para atribuir tipos lexicais, fazendo, no fundo, anotação com um conjunto de etiquetas altamente detalhado. Os resultados mostram que o SVM-TK melhora o estado-da-arte, com os já habituais problemas de esparssez de dados fazendo com que este efeito seja notado quando a quantidade de dados de treino é suficientemente grande.Fundação para a Ciência e a Tecnologia (FCT, SFRH/BD/41465/2007
    corecore