29,469 research outputs found

    High-order Newton-type iterative methods with memory for solving nonlinear equations

    Get PDF
    In this paper, we present a new family of two-step Newton-type iterative methods with memory for solving nonlinear equations. In order to obtain a Newton-type method with memory, we first present an optimal two-parameter fourth-order Newton-type method without memory. Then, based on the two-parameter method without memory, we present a new two-parameter Newton-type method with memory. Using two self-correcting parameters calculated by Hermite interpolatory polynomials, the RR-order of convergence of a new Newton-type method with memory is increased from 4 to 5.7016 without any additional calculations. Numerical comparisons are made with some known methods by using the basins of attraction and through numerical computations to demonstrate the efficiency and the performance of the presented methods

    Solving nonlinear problems by Ostrowski Chun type parametric families

    Full text link
    In this paper, by using a generalization of Ostrowski' and Chun's methods two bi-parametric families of predictor-corrector iterative schemes, with order of convergence four for solving system of nonlinear equations, are presented. The predictor of the first family is Newton's method, and the predictor of the second one is Steffensen's scheme. One of them is extended to the multidimensional case. Some numerical tests are performed to compare proposed methods with existing ones and to confirm the theoretical results. We check the obtained results by solving the molecular interaction problem.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT, Republica Dominicana.Cordero Barbero, A.; Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, M. (2015). Solving nonlinear problems by Ostrowski Chun type parametric families. Journal of Mathematical Chemistry. 53(1):430-449. https://doi.org/10.1007/s10910-014-0432-zS430449531M.S. Petkovic̀, B. Neta, L.D. Petkovic̀, J. Dz̆unic̀, Multipoint Methods for Solving Nonlinear Equations (Academic, New York, 2013)M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction–diffusion model arising in mathematical chemistry. J. Math. Chem. 51(9), 2361–2385 (2013)P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: Formalism and first application to atomic problems. J. Math. Chem. 22, 107–116 (1997)C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49, 1384–1415 (2011)K. Maleknejad, M. Alizadeh, An efficient numerical scheme for solving hammerstein integral equation arisen in chemical phenomenon. Procedia Comput. Sci. 3, 361–364 (2011)R.C. Rach, J.S. Duan, A.M. Wazwaz, Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52, 255–267 (2014)J.F. Steffensen, Remarks on iteration. Skand. Aktuar Tidskr. 16, 64–72 (1933)J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic, New York, 1970)H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)J.R. Sharma, R.K. Guha, R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)M. Abad, A. Cordero, J.R. Torregrosa, Fourth- and fifth-order methods for solving nonlinear systems of equations: an application to the Global positioning system. Abstr. Appl. Anal.(2013) Article ID:586708. doi: 10.1155/2013/586708F. Soleymani, T. Lotfi, P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014)M.T. Darvishi, N. Darvishi, SOR-Steffensen-Newton method to solve systems of nonlinear equations. Appl. Math. 2(2), 21–27 (2012). doi: 10.5923/j.am.20120202.05F. Awawdeh, On new iterative method for solving systems of nonlinear equations. Numer. Algorithms 5(3), 395–409 (2010)D.K.R. Babajee, A. Cordero, F. Soleymani, J.R. Torregrosa, On a novel fourth-order algorithm for solving systems of nonlinear equations. J. Appl. Math. (2012) Article ID:165452. doi: 10.1155/2012/165452A. Cordero, J.R. Torregrosa, M.P. Vassileva, Pseudocomposition: a technique to design predictor–corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218(23), 1496–1504 (2012)A. Cordero, J.R. Torregrosa, M.P. Vassileva, Increasing the order of convergence of iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 252, 86–94 (2013)A.M. Ostrowski, Solution of Equations and System of Equations (Academic, New York, 1966)C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006)R. King, A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. (2014). doi: 10.1016/j.cam.2014.01.024A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton Jarratts composition. Numer. Algorithms 55, 87–99 (2010)P. Jarratt, Some fourth order multipoint methods for solving equations. Math. Comput. 20, 434–437 (1966)A. Cordero, J.R. Torregrosa, Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensens method of fourth-order convergence and its applications. Appl. Math. Comput. 216, 1978–1983 (2010)A. Cordero, J.R. Torregrosa, A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. 217, 7653–7659 (2011)L.B. Rall, New York, Computational Solution of Nonlinear Operator Equations (Robert E. Krieger Publishing Company Inc, New York, 1969

    A family of parametric schemes of arbitrary even order for solving nonlinear models

    Full text link
    [EN] Many problems related to gas dynamics, heat transfer or chemical reactions are modeled by means of partial differential equations that usually are solved by using approximation techniques. When they are transformed in nonlinear systems of equations via a discretization process, this system is big-sized and high-order iterative methods are specially useful. In this paper, we construct a new family of parametric iterative methods with arbitrary even order, based on the extension of Ostrowski' and Chun's methods for solving nonlinear systems. Some elements of the proposed class are known methods meanwhile others are new schemes with good properties. Some numerical tests confirm the theoretical results and allow us to compare the numerical results obtained by applying new methods and known ones on academical examples. In addition, we apply one of our methods for approximating the solution of a heat conduction problem described by a parabolic partial differential equation.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana.Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). A family of parametric schemes of arbitrary even order for solving nonlinear models. Journal of Mathematical Chemistry. 55(7):1443-1460. https://doi.org/10.1007/s10910-016-0723-7S14431460557R. Escobedo, L.L. Bonilla, Numerical methods for quantum drift-diffusion equation in semiconductor phisics. Math. Chem. 40(1), 3–13 (2006)S.J. Preece, J. Villingham, A.C. King, Chemical clock reactions: the effect of precursor consumtion. Math. Chem. 26, 47–73 (1999)H. Montazeri, F. Soleymani, S. Shateyi, S.S. Motsa, On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math. 2012 ID. 751975, 15 pages (2012)J.L. Hueso, E. Martínez, C. Teruel, Convergence, effiency and dinamimics of new fourth and sixth order families of iterative methods for nonlinear systems. J. Comput. Appl. Math. 275, 412–420 (2015)J.R. Sharma, H. Arora, Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014)X. Wang, T. Zhang, W. Qian, M. Teng, Seventh-order derivative-free iterative method for solving nonlinear systems. Numer. Algor. 70, 545–558 (2015)J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)A. Cordero, J.G. Maimó, J.R. Torregrosa, M.P. Vassileva, Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)A.M. Ostrowski, Solution of equations and systems of equations (Prentice-Hall, Englewood Cliffs, New York, 1964)C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006)A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton-Jarratt’s composition. Numer. Algor. 55, 87–99 (2010)J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equations in several variables (Academic, New York, 1970)C. Hermite, Sur la formule dinterpolation de Lagrange. Reine Angew. Math. 84, 70–79 (1878)A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007

    Third-order iterative methods with applications to Hammerstein equations: A unified approach

    Get PDF
    AbstractThe geometrical interpretation of a family of higher order iterative methods for solving nonlinear scalar equations was presented in [S. Amat, S. Busquier, J.M. Gutiérrez, Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157(1) (2003) 197–205]. This family includes, as particular cases, some of the most famous third-order iterative methods: Chebyshev methods, Halley methods, super-Halley methods, C-methods and Newton-type two-step methods. The aim of the present paper is to analyze the convergence of this family for equations defined between two Banach spaces by using a technique developed in [J.A. Ezquerro, M.A. Hernández, Halley’s method for operators with unbounded second derivative. Appl. Numer. Math. 57(3) (2007) 354–360]. This technique allows us to obtain a general semilocal convergence result for these methods, where the usual conditions on the second derivative are relaxed. On the other hand, the main practical difficulty related to the classical third-order iterative methods is the evaluation of bilinear operators, typically second-order Fréchet derivatives. However, in some cases, the second derivative is easy to evaluate. A clear example is provided by the approximation of Hammerstein equations, where it is diagonal by blocks. We finish the paper by applying our methods to some nonlinear integral equations of this type

    Stability anomalies of some jacobian-free iterative methods of high order of convergence

    Full text link
    [EN] In this manuscript, we design two classes of parametric iterative schemes to solve nonlinear problems that do not need to evaluate Jacobian matrices and need to solve three linear systems per iteration with the same divided difference operator as the coefficient matrix. The stability performance of the classes is analyzed on a quadratic polynomial system, and it is shown that for many values of the parameter, only convergence to the roots of the problem exists. Finally, we check the performance of these methods on some test problems to confirm the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under grants PGC2018-095896-B-C22, Generalitat Valenciana PROMETEO/2016/089 and FONDOCYT 027-2018 and 029-2018, Dominican Republic.Cordero Barbero, A.; García-Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, MP. (2019). Stability anomalies of some jacobian-free iterative methods of high order of convergence. Axioms. 8(2):1-15. https://doi.org/10.3390/axioms8020051S11582Frontini, M., & Sormani, E. (2004). Third-order methods from quadrature formulae for solving systems of nonlinear equations. Applied Mathematics and Computation, 149(3), 771-782. doi:10.1016/s0096-3003(03)00178-4Homeier, H. H. . (2004). A modified Newton method with cubic convergence: the multivariate case. Journal of Computational and Applied Mathematics, 169(1), 161-169. doi:10.1016/j.cam.2003.12.041Aslam Noor, M., & Waseem, M. (2009). Some iterative methods for solving a system of nonlinear equations. Computers & Mathematics with Applications, 57(1), 101-106. doi:10.1016/j.camwa.2008.10.067Xiao, X., & Yin, H. (2015). A new class of methods with higher order of convergence for solving systems of nonlinear equations. Applied Mathematics and Computation, 264, 300-309. doi:10.1016/j.amc.2015.04.094Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Darvishi, M. T., & Barati, A. (2007). A third-order Newton-type method to solve systems of nonlinear equations. Applied Mathematics and Computation, 187(2), 630-635. doi:10.1016/j.amc.2006.08.080Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7Narang, M., Bhatia, S., & Kanwar, V. (2016). New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations. Applied Mathematics and Computation, 275, 394-403. doi:10.1016/j.amc.2015.11.063Behl, R., Sarría, Í., González, R., & Magreñán, Á. A. (2019). Highly efficient family of iterative methods for solving nonlinear models. Journal of Computational and Applied Mathematics, 346, 110-132. doi:10.1016/j.cam.2018.06.042Amorós, C., Argyros, I., González, R., Magreñán, Á., Orcos, L., & Sarría, Í. (2019). Study of a High Order Family: Local Convergence and Dynamics. Mathematics, 7(3), 225. doi:10.3390/math7030225Argyros, I., & González, D. (2015). Local Convergence for an Improved Jarratt-type Method in Banach Space. International Journal of Interactive Multimedia and Artificial Intelligence, 3(4), 20. doi:10.9781/ijimai.2015.344Sharma, J. R., & Gupta, P. (2014). An efficient fifth order method for solving systems of nonlinear equations. Computers & Mathematics with Applications, 67(3), 591-601. doi:10.1016/j.camwa.2013.12.004Cordero, A., Gutiérrez, J. M., Magreñán, Á. A., & Torregrosa, J. R. (2016). Stability analysis of a parametric family of iterative methods for solving nonlinear models. Applied Mathematics and Computation, 285, 26-40. doi:10.1016/j.amc.2016.03.021Cordero, A., Soleymani, F., & Torregrosa, J. R. (2014). Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Applied Mathematics and Computation, 244, 398-412. doi:10.1016/j.amc.2014.07.010Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zArgyros, I., & George, S. (2015). Ball Convergence for Steffensen-type Fourth-order Methods. International Journal of Interactive Multimedia and Artificial Intelligence, 3(4), 37. doi:10.9781/ijimai.2015.347Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    Memory in a new variant of King's family for solving nonlinear systems

    Full text link
    [EN] In the recent literature, very few high-order Jacobian-free methods with memory for solving nonlinear systems appear. In this paper, we introduce a new variant of King's family with order four to solve nonlinear systems along with its convergence analysis. The proposed family requires two divided difference operators and to compute only one inverse of a matrix per iteration. Furthermore, we have extended the proposed scheme up to the sixth-order of convergence with two additional functional evaluations. In addition, these schemes are further extended to methods with memory. We illustrate their applicability by performing numerical experiments on a wide variety of practical problems, even big-sized. It is observed that these methods produce approximations of greater accuracy and are more efficient in practice, compared with the existing methods.This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE).Kansal, M.; Cordero Barbero, A.; Bhalla, S.; Torregrosa Sánchez, JR. (2020). Memory in a new variant of King's family for solving nonlinear systems. Mathematics. 8(8):1-15. https://doi.org/10.3390/math8081251S11588Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zCordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2011). Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 217(9), 4548-4556. doi:10.1016/j.amc.2010.11.006Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452Zheng, Q., Zhao, P., & Huang, F. (2011). A family of fourth-order Steffensen-type methods with the applications on solving nonlinear ODEs. Applied Mathematics and Computation, 217(21), 8196-8203. doi:10.1016/j.amc.2011.01.095Sharma, J., & Arora, H. (2013). An efficient derivative free iterative method for solving systems of nonlinear equations. Applicable Analysis and Discrete Mathematics, 7(2), 390-403. doi:10.2298/aadm130725016sSharma, J. R., Arora, H., & Petković, M. S. (2014). An efficient derivative free family of fourth order methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 235, 383-393. doi:10.1016/j.amc.2014.02.103Wang, X., Zhang, T., Qian, W., & Teng, M. (2015). Seventh-order derivative-free iterative method for solving nonlinear systems. Numerical Algorithms, 70(3), 545-558. doi:10.1007/s11075-015-9960-2Chicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2020). On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory. Applied Mathematics Letters, 104, 106277. doi:10.1016/j.aml.2020.106277Petković, M. S., & Sharma, J. R. (2015). On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numerical Algorithms, 71(2), 457-474. doi:10.1007/s11075-015-0003-9Narang, M., Bhatia, S., Alshomrani, A. S., & Kanwar, V. (2019). General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 352, 23-39. doi:10.1016/j.cam.2018.10.048King, R. F. (1973). A Family of Fourth Order Methods for Nonlinear Equations. SIAM Journal on Numerical Analysis, 10(5), 876-879. doi:10.1137/0710072Hermite, M. C., & Borchardt, M. (1878). Sur la formule d’interpolation de Lagrange. Journal für die reine und angewandte Mathematik (Crelles Journal), 1878(84), 70-79. doi:10.1515/crelle-1878-18788405Petkovic, M., Dzunic, J., & Petkovic, L. (2011). A family of two-point methods with memory for solving nonlinear equations. Applicable Analysis and Discrete Mathematics, 5(2), 298-317. doi:10.2298/aadm110905021pCordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8Noor, M. A., Waseem, M., & Noor, K. I. (2015). New iterative technique for solving a system of nonlinear equations. Applied Mathematics and Computation, 271, 446-466. doi:10.1016/j.amc.2015.08.125Pramanik, S. (2002). Kinematic Synthesis of a Six-Member Mechanism for Automotive Steering. Journal of Mechanical Design, 124(4), 642-645. doi:10.1115/1.150337

    Widening basins of attraction of optimal iterative methods

    Full text link
    [EN] In this work, we analyze the dynamical behavior on quadratic polynomials of a class of derivative-free optimal parametric iterative methods, designed by Khattri and Steihaug. By using their parameter as an accelerator, we develop different methods with memory of orders three, six and twelve, without adding new functional evaluations. Then a dynamical approach is made, comparing each of the proposed methods with the original ones without memory, with the following empiric conclusion: Basins of attraction of iterative schemes with memory are wider and the behavior is more stable. This has been numerically checked by estimating the solution of a practical problem, as the friction factor of a pipe and also of other nonlinear academic problems.This research was supported by Islamic Azad University, Hamedan Branch, Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and Generalitat Valenciana PROMETEO/2016/089.Bakhtiari, P.; Cordero Barbero, A.; Lotfi, T.; Mahdiani, K.; Torregrosa Sánchez, JR. (2017). Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics. 87(2):913-938. https://doi.org/10.1007/s11071-016-3089-2S913938872Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Lett. 25, 2209–2217 (2012)Amat, S., Busquier, S., Bermúdez, C., Magreñán, Á.A.: On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. 84(1), 9–18 (2016)Chun, C., Neta, B.: An analysis of a family of Maheshwari-based optimal eighth order methods. Appl. Math. Comput. 253, 294–307 (2015)Babajee, D.K.R., Cordero, A., Soleymani, F., Torregrosa, J.R.: On improved three-step schemes with high efficiency index and their dynamics. Numer. Algorithms 65(1), 153–169 (2014)Argyros, I.K., Magreñán, Á.A.: On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252, 336–346 (2015)Petković, M., Neta, B., Petković, L., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, London (2013)Ostrowski, A.M.: Solution of Equations and System of Equations. Prentice-Hall, Englewood Cliffs, NJ (1964)Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)Khattri, S.K., Steihaug, T.: Algorithm for forming derivative-free optimal methods. Numer. Algorithms 65(4), 809–824 (2014)Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)Cordero, A., Soleymani, F., Torregrosa, J.R., Shateyi, S.: Basins of Attraction for Various Steffensen-Type Methods. J. Appl. Math. 2014, 1–17 (2014)Devaney, R.L.: The Mandelbrot Set, the Farey Tree and the Fibonacci sequence. Am. Math. Mon. 106(4), 289–302 (1999)McMullen, C.: Families of rational maps and iterative root-finding algorithms. Ann. Math. 125(3), 467–493 (1987)Chicharro, F., Cordero, A., Gutiérrez, J.M., Torregrosa, J.R.: Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 70237035 (2013)Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations. Appl. Math. Comput. 227, 567–592 (2014)Lotfi, T., Magreñán, Á.A., Mahdiani, K., Rainer, J.J.: A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: dynamic study and approach. Appl. Math. Comput. 252, 347–353 (2015)Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. 2013, 1–11 (2013)Cordero, A., Lotfi, T., Torregrosa, J.R., Assari, P., Mahdiani, K.: Some new bi-accelerator two-point methods for solving nonlinear equations. Comput. Appl. Math. 35(1), 251–267 (2016)Cordero, A., Lotfi, T., Bakhtiari, P., Torregrosa, J.R.: An efficient two-parametric family with memory for nonlinear equations. Numer. Algorithms 68(2), 323–335 (2015)Lotfi, T., Mahdiani, K., Bakhtiari, P., Soleymani, F.: Constructing two-step iterative methods with and without memory. Comput. Math. Math. Phys. 55(2), 183–193 (2015)Cordero, A., Maimó, J.G., Torregrosa, J.R., Vassileva, M.P.: Solving nonlinear problems by Ostrowski–Chun type parametric families. J. Math. Chem. 53, 430–449 (2015)Abad, M., Cordero, A., Torregrosa, J.R.: A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roum. Tome 57(105), 133–145 (2014)Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)White, F.: Fluid Mechanics. McGraw-Hill, Boston (2003)Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)Soleymani, F., Babajee, D.K.R., Shateyi, S., Motsa, S.S.: Construction of optimal derivative-free techniques without memory. J. Appl. Math. (2012). doi: 10.1155/2012/49702

    Modified Potra-Pták multi-step schemes with accelerated order of convergence for solving sistems of nonlinear equations

    Full text link
    [EN] In this study, an iterative scheme of sixth order of convergence for solving systems of nonlinear equations is presented. The scheme is composed of three steps, of which the first two steps are that of third order Potra-Ptak method and last is weighted-Newton step. Furthermore, we generalize our work to derive a family of multi-step iterative methods with order of convergence 3r + 6, r = 0, 1, 2, .... The sixth order method is the special case of this multi-step scheme for r = 0. The family gives a four-step ninth order method for r = 1. As much higher order methods are not used in practice, so we study sixth and ninth order methods in detail. Numerical examples are included to confirm theoretical results and to compare the methods with some existing ones. Different numerical tests, containing academical functions and systems resulting from the discretization of boundary problems, are introduced to show the efficiency and reliability of the proposed methods.This research was partially supported by Ministerio de Economia y Competitividad under grants MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.Arora, H.; Torregrosa Sánchez, JR.; Cordero Barbero, A. (2019). Modified Potra-Pták multi-step schemes with accelerated order of convergence for solving sistems of nonlinear equations. Mathematical and Computational Applications (Online). 24(1):1-15. https://doi.org/10.3390/mca24010003S115241Homeier, H. H. . (2004). A modified Newton method with cubic convergence: the multivariate case. Journal of Computational and Applied Mathematics, 169(1), 161-169. doi:10.1016/j.cam.2003.12.041Darvishi, M. T., & Barati, A. (2007). A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(1), 257-261. doi:10.1016/j.amc.2006.09.115Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zCordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2011). Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 217(9), 4548-4556. doi:10.1016/j.amc.2010.11.006Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 236(6), 1259-1266. doi:10.1016/j.cam.2011.08.008Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). Ostrowski type methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 218(6), 2377-2385. doi:10.1016/j.amc.2011.08.011Grau-Sánchez, M., Noguera, M., & Amat, S. (2013). On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. Journal of Computational and Applied Mathematics, 237(1), 363-372. doi:10.1016/j.cam.2012.06.005Sharma, J. R., & Arora, H. (2013). On efficient weighted-Newton methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 222, 497-506. doi:10.1016/j.amc.2013.07.066Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    A new fourth-order family for solving nonlinear problems and its dynamics

    Full text link
    In this manuscript, a new parametric class of iterative methods for solving nonlinear systems of equations is proposed. Its fourth-order of convergence is proved and a dynamical analysis on low-degree polynomials is made in order to choose those elements of the family with better conditions of stability. These results are checked by solving the nonlinear system that arises from the partial differential equation of molecular interaction.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-{01, 02} and Universitat Politecnica de Valencia SP20120474.Cordero Barbero, A.; Feng, L.; Magrenan, A.; Torregrosa Sánchez, JR. (2015). A new fourth-order family for solving nonlinear problems and its dynamics. Journal of Mathematical Chemistry. 53(3):893-910. https://doi.org/10.1007/s10910-014-0464-4S893910533R.C. Rach, J.S. Duan, A.M. Wazwaz, Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52(1), 255–267 (2014)R. Singh, G. Nelakanti, J. Kumar, A new efficient technique for solving two-point boundary value problems for integro-differential equations. J. Math. Chem. doi: 10.1007/s10910-014-0363-8M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlineal reaction–diffusion model arising in mathematical chemistry. J. Math. Chem. 51, 2361–2385 (2013)P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: formalism and first application to atomic problems. J. Math. Chem. 22, 107–116 (1997)C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49, 1384–1415 (2011)A. Klamt, Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99, 2224–2235 (1995)A. Klamt, V. Jonas, T. Brger, J.C.W. Lohrenz, Refinement and parametrization of COSMORS. J. Phys. Chem. A 102, 5074–5085 (1998)H. Grensemann, J. Gmehling, Performance of a conductor-like screening model for real solvents model in comparison to classical group contribution methods. Ind. Eng. Chem. Res. 44(5), 1610–1624 (2005)T. Banerjee, A. Khanna, Infinite dilution activity coefficients for trihexyltetradecyl phosphonium ionic liquids: measurements and COSMO-RS prediction. J. Chem. Eng. Data 51(6), 2170–2177 (2006)R. Franke, B. Hannebauer, On the influence of basis sets and quantum chemical methods on the prediction accuracy of COSMO-RS. Phys. Chem. Chem. Phys. 13, 21344–21350 (2011)K. Maleknejad, M. Alizadeh, An efficient numerical scheme for solving Hammerstein integral equation arisen in chemical phenomenon. Proc. Comput. Sci. 3, 361–364 (2011)M. Petković, B. Neta, L. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations (Academic Press, Amsterdam, 2012)A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)H.T. Kung, J.F. Traub, Optimal order of one-point and multi-point iterations. J. Assoc. Comput. Math. 21, 643–651 (1974)A.M. Ostrowski, Solution of Equations and Systems of Equations (Prentice-Hall, Englewood Cliffs, 1964)P. Jarratt, Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)R.F. King, A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010)S. Amat, S. Busquier, Á.A. Magreñán, Reducing Chaos and Bifurcations in Newton-Type Methods. Abstract and Applied Analysis Volume 2013 (2013), Article ID 726701, 10 pages, doi: 10.1155/2013/726701S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)F. Chicharro, A. Cordero, J.M. Gutiérrez, J.R. Torregrosa, Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)C. Chun, M.Y. Lee, B. Neta, J. Džunić, On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013)Á. A. Magreñán, Estudio de la dinámica del método de Newton amortiguado (PhD Thesis). Servicio de Publicaciones, Universidad de La Rioja, (2013). http://dialnet.unirioja.es/servlet/tesis?codigo=38821P. Blanchard, The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. The Scientific World J. 2013 (Article ID 780153) (2013)L.B. Rall, Computational Solution of Nonlinear Operator Equations (Robert E. Krieger Publishing Company Inc., New York, 1969)J.R. Sharma, R.K. Guna, R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013

    Chaos and convergence of a family generalizing Homeier's method with damping parameters

    Full text link
    [EN] In this paper, a family of parametric iterative methods for solving nonlinear equations, including Homeier's scheme, is presented. Its local convergence is obtained and the dynamical behavior on quadratic polynomials of the resulting family is studied in order to choose those values of the parameter that ensure stable behavior. To get this aim, the analysis of fixed and critical points and the associated parameter plane show the dynamical richness of the family and allow us to find members of this class with good numerical properties and also other ones with pathological conduct. To check the stable behavior of the good selected ones, the discretized planar 1D-Bratu problem is solved. Some of those chosen members of the family achieve good results when Homeier's scheme fails.This research was supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P.Cordero Barbero, A.; Franques, A.; Torregrosa Sánchez, JR. (2016). Chaos and convergence of a family generalizing Homeier's method with damping parameters. Nonlinear Dynamics. 85(3):1939-1954. https://doi.org/10.1007/s11071-016-2807-0S19391954853Amat, S., Busquier, S., Bermúdez, C., Magreñán, Á.A.: On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. doi: 10.1007/s11071-015-2179-xAmat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Lett. 25, 2209–2217 (2012)Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)Babajee, D.K.R., Cordero, A., Torregrosa, J.R.: Study of iterative methods through the Cayley Quadratic Test. J. Comput. Appl. Math. 291, 358–369 (2016)Babajee, D.K.R., Thukral, R.: On a 4-point sixteenth-order king family of iterative methods for solving nonlinear equations. Int. J. Math. Math. Sci. 2012, ID 979245, 13 (2012)Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)Boyd, J.P.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553–5565 (2011)Bratu, G.: Sur les equation integrals non-lineaires. Bull. Math. Soc. Fr. 42, 113–142 (1914)Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013, Article ID 780153 (2013)Chun, C., Lee, M.Y.: A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl. Math. Comput. 223, 506–519 (2013)Cordero, A., García-Maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev–Halley type method. Appl. Math. Comput. 219, 8568–8583 (2013)Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. Fr. 47, 161–271 (1919); 48, 33–94; 208–314 (1920)Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Transl. Am. Math. Soc. Ser. 2, 295–381 (1963)Gutiérrez, J.M., Hernández, M.A., Romero, N.: Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233, 2688–2695 (2010)Homeier, H.H.H.: On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)Jacobsen, J., Schmitt, K.: The Liouville–Bratu–Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)Jalilian, R.: Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Commun. 181, 1868–1872 (2010)Julia, G.: Mémoire sur l’iteration des fonctions rationnelles. J. Math. Pure Appl. 8, 47–245 (1918)Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)Mohsen, A.: A simple solution of the Bratu problem. Comput. Math. Appl. 67, 26–33 (2014)Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equation. Appl. Math. Comput. 227, 567–592 (2014)Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1960)Petković, M., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Amsterdam (2013)Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)Sharma, J.R.: Improved Chebyshev–Halley method with sixth and eighth order of convergence. Appl. Math. Comput. 256, 119–124 (2015)Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intell. 24, 37–46 (2002)Wan, Y.Q., Guo, Q., Pan, N.: Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Numer. Simul. 5, 5–8 (2004
    corecore