23 research outputs found

    Differential-Algebraic Equations

    Get PDF
    Differential-Algebraic Equations (DAE) are today an independent field of research, which is gaining in importance and becoming of increasing interest for applications and mathematics itself. This workshop has drawn the balance after about 25 years investigations of DAEs and the research aims of the future were intensively discussed

    Spline approximations for systems of ordinary differential equations

    Full text link
    El objetivo de esta tesis doctoral es desarrollar nuevos métodos basados en splines para la resolución de sistemas de ecuaciones diferenciales del tipo Y'(x)=f(x,Y(x)) , a<x<b Y(a)=Y_a (1) donde Y_a, Y(x) son matrices rxq, comenzando con splines de tipo cúbico y con un algoritmo similar al propuesto por Loscalzo y Talbot en el caso escalar [20], intentando poder aumentar el orden del spline, lo que con el método dado en [20] no puede hacerse de forma convergente. Trataremos también de aplicar dicho método al problema Y''(x)=f(x,Y(x),Y'(x)) , a<x<b Y(a)=Y_a Y'(a)=Y_b (2) sin aumentar la dimensión del problema para evitar el sobrecoste computacional. Los métodos presentados se compararán con los existentes en la literatura y serán implementados en algoritmos para ponerlos, debidamente documentados, a disposición de la comunidad científica.Tung, MM. (2013). Spline approximations for systems of ordinary differential equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31658TESISPremios Extraordinarios de tesis doctorale

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Fast numerical methods for mixed--integer nonlinear model--predictive control

    Get PDF
    This thesis aims at the investigation and development of fast numerical methods for nonlinear mixed--integer optimal control and model- predictive control problems. A new algorithm is developed based on the direct multiple shooting method for optimal control and on the idea of real--time iterations, and using a convex reformulation and relaxation of dynamics and constraints of the original predictive control problem. This algorithm relies on theoretical results and is based on a nonconvex SQP method and a new active set method for nonconvex parametric quadratic programming. It achieves real--time capable control feedback though block structured linear algebra for which we develop new matrix updates techniques. The applicability of the developed methods is demonstrated on several applications. This thesis presents novel results and advances over previously established techniques in a number of areas as follows: We develop a new algorithm for mixed--integer nonlinear model- predictive control by combining Bock's direct multiple shooting method, a reformulation based on outer convexification and relaxation of the integer controls, on rounding schemes, and on a real--time iteration scheme. For this new algorithm we establish an interpretation in the framework of inexact Newton-type methods and give a proof of local contractivity assuming an upper bound on the sampling time, implying nominal stability of this new algorithm. We propose a convexification of path constraints directly depending on integer controls that guarantees feasibility after rounding, and investigate the properties of the obtained nonlinear programs. We show that these programs can be treated favorably as MPVCs, a young and challenging class of nonconvex problems. We describe a SQP method and develop a new parametric active set method for the arising nonconvex quadratic subproblems. This method is based on strong stationarity conditions for MPVCs under certain regularity assumptions. We further present a heuristic for improving stationary points of the nonconvex quadratic subproblems to global optimality. The mixed--integer control feedback delay is determined by the computational demand of our active set method. We describe a block structured factorization that is tailored to Bock's direct multiple shooting method. It has favorable run time complexity for problems with long horizons or many controls unknowns, as is the case for mixed- integer optimal control problems after outer convexification. We develop new matrix update techniques for this factorization that reduce the run time complexity of all but the first active set iteration by one order. All developed algorithms are implemented in a software package that allows for the generic, efficient solution of nonlinear mixed-integer optimal control and model-predictive control problems using the developed methods

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    corecore