1,675 research outputs found

    Edge-centric multimodal authentication system using encrypted biometric templates

    Get PDF
    Data security, complete system control, and missed storage and computing opportunities in personal portable devices are some of the major limitations of the centralized cloud environment. Among these limitations, security is a prime concern due to potential unauthorized access to private data. Biometrics, in particular, is considered sensitive data, and its usage is subject to the privacy protection law. To address this issue, a multimodal authentication system using encrypted biometrics for the edge-centric cloud environment is proposed in this study. Personal portable devices are utilized for encrypting biometrics in the proposed system, which optimizes the use of resources and tackles another limitation of the cloud environment. Biometrics is encrypted using a new method. In the proposed system, the edges transmit the encrypted speech and face for processing in the cloud. The cloud then decrypts the biometrics and performs authentication to confirm the identity of an individual. The model for speech authentication is based on two types of features, namely, Mel-frequency cepstral coefficients and perceptual linear prediction coefficients. The model for face authentication is implemented by determining the eigenfaces. The final decision about the identity of a user is based on majority voting. Experimental results show that the new encryption method can reliably hide the identity of an individual and accurately decrypt the biometrics, which is vital for errorless authentication

    Behaviour Profiling for Mobile Devices

    Get PDF
    With more than 5 billion users globally, mobile devices have become ubiquitous in our daily life. The modern mobile handheld device is capable of providing many multimedia services through a wide range of applications over multiple networks as well as on the handheld device itself. These services are predominantly driven by data, which is increasingly associated with sensitive information. Such a trend raises the security requirement for reliable and robust verification techniques of users.This thesis explores the end-user verification requirements of mobile devices and proposes a novel Behaviour Profiling security framework for mobile devices. The research starts with a critical review of existing mobile technologies, security threats and mechanisms, and highlights a broad range of weaknesses. Therefore, attention is given to biometric verification techniques which have the ability to offer better security. Despite a large number of biometric works carried out in the area of transparent authentication systems (TAS) and Intrusion Detection Systems (IDS), each have a set of weaknesses that fail to provide a comprehensive solution. They are either reliant upon a specific behaviour to enable the system to function or only capable of providing security for network based services. To this end, the behaviour profiling technique is identified as a potential candidate to provide high level security from both authentication and IDS aspects, operating in a continuous and transparent manner within the mobile host environment.This research examines the feasibility of a behaviour profiling technique through mobile users general applications usage, telephone, text message and multi-instance application usage with the best experimental results Equal Error Rates (EER) of 13.5%, 5.4%, 2.2% and 10% respectively. Based upon this information, a novel architecture of Behaviour Profiling on mobile devices is proposed. The framework is able to provide a robust, continuous and non-intrusive verification mechanism in standalone, TAS or IDS modes, regardless of device hardware configuration. The framework is able to utilise user behaviour to continuously evaluate the system security status of the device. With a high system security level, users are granted with instant access to sensitive services and data, while with lower system security levels, users are required to reassure their identity before accessing sensitive services.The core functions of the novel framework are validated through the implementation of a simulation system. A series of security scenarios are designed to demonstrate the effectiveness of the novel framework to verify legitimate and imposter activities. By employing the smoothing function of three applications, verification time of 3 minutes and a time period of 60 minutes of the degradation function, the Behaviour Profiling framework achieved the best performance with False Rejection Rate (FRR) rates of 7.57%, 77% and 11.24% for the normal, protected and overall applications respectively and with False Acceptance Rate (FAR) rates of 3.42%, 15.29% and 4.09% for their counterparts

    Securing CNN Model and Biometric Template using Blockchain

    Full text link
    Blockchain has emerged as a leading technology that ensures security in a distributed framework. Recently, it has been shown that blockchain can be used to convert traditional blocks of any deep learning models into secure systems. In this research, we model a trained biometric recognition system in an architecture which leverages the blockchain technology to provide fault tolerant access in a distributed environment. The advantage of the proposed approach is that tampering in one particular component alerts the whole system and helps in easy identification of `any' possible alteration. Experimentally, with different biometric modalities, we have shown that the proposed approach provides security to both deep learning model and the biometric template.Comment: Published in IEEE BTAS 201

    Consumer-facing technology fraud : economics, attack methods and potential solutions

    Get PDF
    The emerging use of modern technologies has not only benefited society but also attracted fraudsters and criminals to misuse the technology for financial benefits. Fraud over the Internet has increased dramatically, resulting in an annual loss of billions of dollars to customers and service providers worldwide. Much of such fraud directly impacts individuals, both in the case of browser-based and mobile-based Internet services, as well as when using traditional telephony services, either through landline phones or mobiles. It is important that users of the technology should be both informed of fraud, as well as protected from frauds through fraud detection and prevention systems. In this paper, we present the anatomy of frauds for different consumer-facing technologies from three broad perspectives - we discuss Internet, mobile and traditional telecommunication, from the perspectives of losses through frauds over the technology, fraud attack mechanisms and systems used for detecting and preventing frauds. The paper also provides recommendations for securing emerging technologies from fraud and attacks

    Iris recognition method based on segmentation

    Get PDF
    The development of science and studies has led to the creation of many modern means and technologies that focused and directed their interests on enhancing security due to the increased need for high degrees of security and protection for individuals and societies. Hence identification using a person's vital characteristics is an important privacy topic for governments, businesses and individuals. A lot of biometric features such as fingerprint, facial measurements, acid, palm, gait, fingernails and iris have been studied and used among all the biometrics, in particular, the iris gets the attention because it has unique advantages as the iris pattern is unique and does not change over time, providing the required accuracy and stability in verification systems. This feature is impossible to modify without risk. When identifying with the iris of the eye, the discrimination system only needs to compare the data of the characteristics of the iris of the person to be tested to determine the individual's identity, so the iris is extracted only from the images taken. Determining correct iris segmentation methods is the most important stage in the verification system, including determining the limbic boundaries of the iris and pupil, whether there is an effect of eyelids and shadows, and not exaggerating centralization that reduces the effectiveness of the iris recognition system. There are many techniques for subtracting the iris from the captured image. This paper presents the architecture of biometric systems that use iris to distinguish people and a recent survey of iris segmentation methods used in recent research, discusses methods and algorithms used for this purpose, presents datasets and the accuracy of each method, and compares the performance of each method used in previous studie

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Activity-Based User Authentication Using Smartwatches

    Get PDF
    Smartwatches, which contain an accelerometer and gyroscope, have recently been used to implement gait and gesture- based biometrics; however, the prior studies have long-established drawbacks. For example, data for both training and evaluation was captured from single sessions (which is not realistic and can lead to overly optimistic performance results), and in cases when the multi-day scenario was considered, the evaluation was often either done improperly or the results are very poor (i.e., greater than 20% of EER). Moreover, limited activities were considered (i.e., gait or gestures), and data captured within a controlled environment which tends to be far less realistic for real world applications. Therefore, this study remedies these past problems by training and evaluating the smartwatch-based biometric system on data from different days, using large dataset that involved the participation of 60 users, and considering different activities (i.e., normal walking (NW), fast walking (FW), typing on a PC keyboard (TypePC), playing mobile game (GameM), and texting on mobile (TypeM)). Unlike the prior art that focussed on simply laboratory controlled data, a more realistic dataset, which was captured within un-constrained environment, is used to evaluate the performance of the proposed system. Two principal experiments were carried out focusing upon constrained and un-constrained environments. The first experiment included a comprehensive analysis of the aforementioned activities and tested under two different scenarios (i.e., same and cross day). By using all the extracted features (i.e., 88 features) and the same day evaluation, EERs of the acceleration readings were 0.15%, 0.31%, 1.43%, 1.52%, and 1.33% for the NW, FW, TypeM, TypePC, and GameM respectively. The EERs were increased to 0.93%, 3.90%, 5.69%, 6.02%, and 5.61% when the cross-day data was utilized. For comparison, a more selective set of features was used and significantly maximize the system performance under the cross day scenario, at best EERs of 0.29%, 1.31%, 2.66%, 3.83%, and 2.3% for the aforementioned activities respectively. A realistic methodology was used in the second experiment by using data collected within unconstrained environment. A light activity detection approach was developed to divide the raw signals into gait (i.e., NW and FW) and stationary activities. Competitive results were reported with EERs of 0.60%, 0% and 3.37% for the NW, FW, and stationary activities respectively. The findings suggest that the nature of the signals captured are sufficiently discriminative to be useful in performing transparent and continuous user authentication.University of Kuf
    • …
    corecore