38,763 research outputs found

    Stability of real parametric polynomial discrete dynamical systems

    Get PDF
    We extend and improve the existing characterization of the dynamics of general quadratic real polynomial maps with coefficients that depend on a single parameter λ\lambda, and generalize this characterization to cubic real polynomial maps, in a consistent theory that is further generalized to real mm-th degree real polynomial maps. In essence, we give conditions for the stability of the fixed points of any real polynomial map with real fixed points. In order to do this, we have introduced the concept of Canonical Polynomial Maps which are topologically conjugate to any polynomial map of the same degree with real fixed points. The stability of the fixed points of canonical polynomial maps has been found to depend solely on a special function termed Product Position Function for a given fixed point. The values of this product position determine the stability of the fixed point in question, when it bifurcates, and even when chaos arises, as it passes through what we have termed stability bands. The exact boundary values of these stability bands are yet to be calculated for regions of type greater than one for polynomials of degree higher than three.Comment: 23 pages, 4 figures, now published in Discrete Dynamics in Nature and Societ

    Metastable States in Spin Glasses and Disordered Ferromagnets

    Full text link
    We study analytically M-spin-flip stable states in disordered short-ranged Ising models (spin glasses and ferromagnets) in all dimensions and for all M. Our approach is primarily dynamical and is based on the convergence of a zero-temperature dynamical process with flips of lattice animals up to size M and starting from a deep quench, to a metastable limit. The results (rigorous and nonrigorous, in infinite and finite volumes) concern many aspects of metastable states: their numbers, basins of attraction, energy densities, overlaps, remanent magnetizations and relations to thermodynamic states. For example, we show that their overlap distribution is a delta-function at zero. We also define a dynamics for M=infinity, which provides a potential tool for investigating ground state structure.Comment: 34 pages (LaTeX); to appear in Physical Review

    Discrete Symmetry and Stability in Hamiltonian Dynamics

    Full text link
    In this tutorial we address the existence and stability of periodic and quasiperiodic orbits in N degree of freedom Hamiltonian systems and their connection with discrete symmetries. Of primary importance in our study are the nonlinear normal modes (NNMs), i.e periodic solutions which represent continuations of the system's linear normal modes in the nonlinear regime. We examine the existence of such solutions and discuss different methods for constructing them and studying their stability under fixed and periodic boundary conditions. In the periodic case, we employ group theoretical concepts to identify a special type of NNMs called one-dimensional "bushes". We describe how to use linear combinations such NNMs to construct s(>1)-dimensional bushes of quasiperiodic orbits, for a wide variety of Hamiltonian systems and exploit the symmetries of the linearized equations to simplify the study of their destabilization. Applying this theory to the Fermi Pasta Ulam (FPU) chain, we review a number of interesting results, which have appeared in the recent literature. We then turn to an analytical and numerical construction of quasiperiodic orbits, which does not depend on the symmetries or boundary conditions. We demonstrate that the well-known "paradox" of FPU recurrences may be explained in terms of the exponential localization of the energies Eq of NNM's excited at the low part of the frequency spectrum, i.e. q=1,2,3,.... Thus, we show that the stability of these low-dimensional manifolds called q-tori is related to the persistence or FPU recurrences at low energies. Finally, we discuss a novel approach to the stability of orbits of conservative systems, the GALIk, k=2,...,2N, by means of which one can determine accurately and efficiently the destabilization of q-tori, leading to the breakdown of recurrences and the equipartition of energy, at high values of the total energy E.Comment: 50 pages, 13 figure

    On resilient control of dynamical flow networks

    Full text link
    Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent technological advancements. The problem has motivated a considerable amount of research within the last few years, particularly focused on the dynamical aspects of network flows, complementing more classical static network flow optimization approaches. In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is considered. A few results recently appeared in the literature and dealing with stability and robustness of dynamical flow networks are gathered and originally presented in a unified framework. In particular, (differential) stability properties of monotone dynamical flow networks are treated in some detail, and the notion of margin of resilience is introduced as a quantitative measure of their robustness. While emphasizing methodological aspects -- including structural properties, such as monotonicity, that enable tractability and scalability -- over the specific applications, connections to well-established road traffic flow models are made.Comment: accepted for publication in Annual Reviews in Control, 201

    A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations

    Full text link
    The purpose of this paper is to enhance a correspondence between the dynamics of the differential equations y˙(t)=g(y(t))\dot y(t)=g(y(t)) on Rd\mathbb{R}^d and those of the parabolic equations u˙=Δu+f(x,u,u)\dot u=\Delta u +f(x,u,\nabla u) on a bounded domain Ω\Omega. We give details on the similarities of these dynamics in the cases d=1d=1, d=2d=2 and d3d\geq 3 and in the corresponding cases Ω=(0,1)\Omega=(0,1), Ω=T1\Omega=\mathbb{T}^1 and dim(Ω\Omega)2\geq 2 respectively. In addition to the beauty of such a correspondence, this could serve as a guideline for future research on the dynamics of parabolic equations
    corecore