11,260 research outputs found

    Dynamical systems method for solving operator equations

    Full text link
    Consider an operator equation F(u)=0F(u)=0 in a real Hilbert space. The problem of solving this equation is ill-posed if the operator F′(u)F'(u) is not boundedly invertible, and well-posed otherwise. A general method, dynamical systems method (DSM) for solving linear and nonlinear ill-posed problems in a Hilbert space is presented. This method consists of the construction of a nonlinear dynamical system, that is, a Cauchy problem, which has the following properties: 1) it has a global solution, 2) this solution tends to a limit as time tends to infinity, 3) the limit solves the original linear or non-linear problem. New convergence and discretization theorems are obtained. Examples of the applications of this approach are given. The method works for a wide range of well-posed problems as well.Comment: 21p

    Dynamical systems method for solving linear finite-rank operator equations

    Full text link
    A version of the Dynamical Systems Method (DSM) for solving ill-conditioned linear algebraic systems is studied in this paper. An {\it a priori} and {\it a posteriori} stopping rules are justified. An iterative scheme is constructed for solving ill-conditioned linear algebraic systems.Comment: 16 pages, 1 table, 1 figur

    The Dynamical Systems Method for solving nonlinear equations with monotone operators

    Get PDF
    A review of the authors's results is given. Several methods are discussed for solving nonlinear equations F(u)=fF(u)=f, where FF is a monotone operator in a Hilbert space, and noisy data are given in place of the exact data. A discrepancy principle for solving the equation is formulated and justified. Various versions of the Dynamical Systems Method (DSM) for solving the equation are formulated. These methods consist of a regularized Newton-type method, a gradient-type method, and a simple iteration method. A priori and a posteriori choices of stopping rules for these methods are proposed and justified. Convergence of the solutions, obtained by these methods, to the minimal norm solution to the equation F(u)=fF(u)=f is proved. Iterative schemes with a posteriori choices of stopping rule corresponding to the proposed DSM are formulated. Convergence of these iterative schemes to a solution to equation F(u)=fF(u)=f is justified. New nonlinear differential inequalities are derived and applied to a study of large-time behavior of solutions to evolution equations. Discrete versions of these inequalities are established.Comment: 50p

    Dynamical systems method for solving nonlinear equations with monotone operators

    Get PDF
    A version of the Dynamical Systems Method (DSM) for solving ill-posed nonlinear equations with monotone operators in a Hilbert space is studied in this paper. An a posteriori stopping rule, based on a discrepancy-type principle is proposed and justified mathematically. The results of two numerical experiments are presented. They show that the proposed version of DSM is numerically efficient. The numerical experiments consist of solving nonlinear integral equations.Comment: 19 pages, 4 figures, 4 table

    Dynamical Systems Method for solving ill-conditioned linear algebraic systems

    Full text link
    A new method, the Dynamical Systems Method (DSM), justified recently, is applied to solving ill-conditioned linear algebraic system (ICLAS). The DSM gives a new approach to solving a wide class of ill-posed problems. In this paper a new iterative scheme for solving ICLAS is proposed. This iterative scheme is based on the DSM solution. An a posteriori stopping rules for the proposed method is justified. This paper also gives an a posteriori stopping rule for a modified iterative scheme developed in A.G.Ramm, JMAA,330 (2007),1338-1346, and proves convergence of the solution obtained by the iterative scheme.Comment: 26 page

    Dynamical Systems Method for ill-posed equations with monotone operators

    Full text link
    Consider an operator equation (*) B(u)−f=0B(u)-f=0 in a real Hilbert space. Let us call this equation ill-posed if the operator B′(u)B'(u) is not boundedly invertible, and well-posed otherwise. The DSM (dynamical systems method) for solving equation (*) consists of a construction of a Cauchy problem, which has the following properties: 1) it has a global solution for an arbitrary initial data, 2) this solution tends to a limit as time tends to infinity, 3) the limit is the minimal-norm solution to the equation B(u)=fB(u)=f. A global convergence theorem is proved for DSM for equation (*) with monotone Cloc2C_{loc}^2 operators BB

    Residual Minimizing Model Interpolation for Parameterized Nonlinear Dynamical Systems

    Full text link
    We present a method for approximating the solution of a parameterized, nonlinear dynamical system using an affine combination of solutions computed at other points in the input parameter space. The coefficients of the affine combination are computed with a nonlinear least squares procedure that minimizes the residual of the governing equations. The approximation properties of this residual minimizing scheme are comparable to existing reduced basis and POD-Galerkin model reduction methods, but its implementation requires only independent evaluations of the nonlinear forcing function. It is particularly appropriate when one wishes to approximate the states at a few points in time without time marching from the initial conditions. We prove some interesting characteristics of the scheme including an interpolatory property, and we present heuristics for mitigating the effects of the ill-conditioning and reducing the overall cost of the method. We apply the method to representative numerical examples from kinetics - a three state system with one parameter controlling the stiffness - and conductive heat transfer - a nonlinear parabolic PDE with a random field model for the thermal conductivity.Comment: 28 pages, 8 figures, 2 table

    The Parameter Houlihan: a solution to high-throughput identifiability indeterminacy for brutally ill-posed problems

    Get PDF
    One way to interject knowledge into clinically impactful forecasting is to use data assimilation, a nonlinear regression that projects data onto a mechanistic physiologic model, instead of a set of functions, such as neural networks. Such regressions have an advantage of being useful with particularly sparse, non-stationary clinical data. However, physiological models are often nonlinear and can have many parameters, leading to potential problems with parameter identifiability, or the ability to find a unique set of parameters that minimize forecasting error. The identifiability problems can be minimized or eliminated by reducing the number of parameters estimated, but reducing the number of estimated parameters also reduces the flexibility of the model and hence increases forecasting error. We propose a method, the parameter Houlihan, that combines traditional machine learning techniques with data assimilation, to select the right set of model parameters to minimize forecasting error while reducing identifiability problems. The method worked well: the data assimilation-based glucose forecasts and estimates for our cohort using the Houlihan-selected parameter sets generally also minimize forecasting errors compared to other parameter selection methods such as by-hand parameter selection. Nevertheless, the forecast with the lowest forecast error does not always accurately represent physiology, but further advancements of the algorithm provide a path for improving physiologic fidelity as well. Our hope is that this methodology represents a first step toward combining machine learning with data assimilation and provides a lower-threshold entry point for using data assimilation with clinical data by helping select the right parameters to estimate
    • …
    corecore