137,422 research outputs found

    Advanced Techniques for Assets Maintenance Management

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThe aim of this paper is to remark the importance of new and advanced techniques supporting decision making in different business processes for maintenance and assets management, as well as the basic need of adopting a certain management framework with a clear processes map and the corresponding IT supporting systems. Framework processes and systems will be the key fundamental enablers for success and for continuous improvement. The suggested framework will help to define and improve business policies and work procedures for the assets operation and maintenance along their life cycle. The following sections present some achievements on this focus, proposing finally possible future lines for a research agenda within this field of assets management

    The safety case and the lessons learned for the reliability and maintainability case

    Get PDF
    This paper examine the safety case and the lessons learned for the reliability and maintainability case

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Diagnostics and prognostics utilising dynamic Bayesian networks applied to a wind turbine gearbox

    Get PDF
    The UK has the largest installed capacity of offshore wind and this is set to increase significantly in future years. The difficulty in conducting maintenance offshore leads to increased operation and maintenance costs compared to onshore but with better condition monitoring and preventative maintenance strategies these costs could be reduced. In this paper an on-line condition monitoring system is created that is capable of diagnosing machine component conditions based on an array of sensor readings. It then informs the operator of actions required. This simplifies the role of the operator and the actions required can be optimised within the program to minimise costs. The program has been applied to a gearbox oil testbed to demonstrate its operational suitability. In addition a method for determining the most cost effective maintenance strategy is examined. This method uses a Dynamic Bayesian Network to simulate the degradation of wind turbine components, effectively acting as a prognostics tool, and calculates the cost of various preventative maintenance strategies compared to purely corrective maintenance actions. These methods are shown to reduce the cost of operating wind turbines in the offshore environment

    A Smart Modular Wireless System for Condition Monitoring Data Acquisition

    Get PDF
    Smart sensors, big data, the cloud and distributed data processing are some of the most interning changes in the way we collect, manage and treat data in recent years. These changes have not significantly influenced the common practices in condition monitoring for shipping. In part this is due to the reduced trust in data security, data ownership issues, lack of technological integration and obscurity of direct benefit. This paper presents a method of incorporating smart sensor techniques and distributed processing in data acquisition for condition monitoring to assist decision support for maintenance actions addressing these inhibitors
    corecore