538 research outputs found

    An OpenMP Programming Environment on Mobile Devices

    Get PDF

    Task migration of DSP application specified with a DFG and implemented with the BSP computing model on a CPU-GPU cluster

    No full text
    International audienceNowadays computer applications are becoming heavier and require, at the same time, real-time results. The Heterogeneous clusters with their computing power represent a good solution to this request. However, it is possible that during the execution, a computing element of the cluster becomes defaulting, needs maintenance, or that the load needs to be re-balanced. . . In this paper, we propose a migration strategy for relocating the execution of a task to another computing element. In particular, we are interested in remap nodes of Data Flow Graph (DFG), representing Digital Signal Processing (DSP) application, onto heterogeneous (CPU-GPU) clusters while keeping up the flow of data and minimizing the temporal perturbation. For our approach, we give a lower bound for the flow of data after the migration and, validate it by the real-time construction of visual saliency map from video input

    Exploiting Parallelism in GPUs

    Get PDF
    <p>Heterogeneous processors with accelerators provide an opportunity to improve performance within a given power budget.</p><p>Many of these heterogeneous processors contain Graphics Processing Units (GPUs) that can perform graphics and embarrassingly parallel computation orders of magnitude faster than a CPU while using less energy. Beyond these obvious applications for GPUs, a larger variety of applications can benefit from a GPU's large computation and memory bandwidth. However, many of these applications are irregular and, as a result, require synchronization and scheduling that are commonly believed to perform poorly on GPUs. The basic building block of synchronization and scheduling is memory consistency, which is, therefore, the first place to look for improving performance on irregular applications. In this thesis, we approach the programmability of irregular applications on GPUs by thinking across traditional boundaries of the compute stack. We think about architecture, microarchitecture and runtime systems from the programmers perspective. To this end, we study architectural memory consistency on future GPUs with cache coherence. In addition, we design a GPU memory system</p><p>microarchitecture that can support fine-grain and coarse-grain synchronization without sacrificing throughput. Finally, we develop a task runtime that embraces the GPU microarchitecture to perform well</p><p>on fork/join parallelism desired by many programmers. Overall, this thesis contributes non-intuitive solutions to improve the performance and programmability of irregular applications from the programmer's perspective.</p>Dissertatio

    Towards Intelligent Runtime Framework for Distributed Heterogeneous Systems

    Get PDF
    Scientific applications strive for increased memory and computing performance, requiring massive amounts of data and time to produce results. Applications utilize large-scale, parallel computing platforms with advanced architectures to accommodate their needs. However, developing performance-portable applications for modern, heterogeneous platforms requires lots of effort and expertise in both the application and systems domains. This is more relevant for unstructured applications whose workflow is not statically predictable due to their heavily data-dependent nature. One possible solution for this problem is the introduction of an intelligent Domain-Specific Language (iDSL) that transparently helps to maintain correctness, hides the idiosyncrasies of lowlevel hardware, and scales applications. An iDSL includes domain-specific language constructs, a compilation toolchain, and a runtime providing task scheduling, data placement, and workload balancing across and within heterogeneous nodes. In this work, we focus on the runtime framework. We introduce a novel design and extension of a runtime framework, the Parallel Runtime Environment for Multicore Applications. In response to the ever-increasing intra/inter-node concurrency, the runtime system supports efficient task scheduling and workload balancing at both levels while allowing the development of custom policies. Moreover, the new framework provides abstractions supporting the utilization of heterogeneous distributed nodes consisting of CPUs and GPUs and is extensible to other devices. We demonstrate that by utilizing this work, an application (or the iDSL) can scale its performance on heterogeneous exascale-era supercomputers with minimal effort. A future goal for this framework (out of the scope of this thesis) is to be integrated with machine learning to improve its decision-making and performance further. As a bridge to this goal, since the framework is under development, we experiment with data from Nuclear Physics Particle Accelerators and demonstrate the significant improvements achieved by utilizing machine learning in the hit-based track reconstruction process

    UPIR: Toward the Design of Unified Parallel Intermediate Representation for Parallel Programming Models

    Full text link
    The complexity of heterogeneous computing architectures, as well as the demand for productive and portable parallel application development, have driven the evolution of parallel programming models to become more comprehensive and complex than before. Enhancing the conventional compilation technologies and software infrastructure to be parallelism-aware has become one of the main goals of recent compiler development. In this paper, we propose the design of unified parallel intermediate representation (UPIR) for multiple parallel programming models and for enabling unified compiler transformation for the models. UPIR specifies three commonly used parallelism patterns (SPMD, data and task parallelism), data attributes and explicit data movement and memory management, and synchronization operations used in parallel programming. We demonstrate UPIR via a prototype implementation in the ROSE compiler for unifying IR for both OpenMP and OpenACC and in both C/C++ and Fortran, for unifying the transformation that lowers both OpenMP and OpenACC code to LLVM runtime, and for exporting UPIR to LLVM MLIR dialect.Comment: Typos corrected. Format update

    Toward optimised skeletons for heterogeneous parallel architecture with performance cost model

    Get PDF
    High performance architectures are increasingly heterogeneous with shared and distributed memory components, and accelerators like GPUs. Programming such architectures is complicated and performance portability is a major issue as the architectures evolve. This thesis explores the potential for algorithmic skeletons integrating a dynamically parametrised static cost model, to deliver portable performance for mostly regular data parallel programs on heterogeneous archi- tectures. The rst contribution of this thesis is to address the challenges of program- ming heterogeneous architectures by providing two skeleton-based programming libraries: i.e. HWSkel for heterogeneous multicore clusters and GPU-HWSkel that enables GPUs to be exploited as general purpose multi-processor devices. Both libraries provide heterogeneous data parallel algorithmic skeletons including hMap, hMapAll, hReduce, hMapReduce, and hMapReduceAll. The second contribution is the development of cost models for workload dis- tribution. First, we construct an architectural cost model (CM1) to optimise overall processing time for HWSkel heterogeneous skeletons on a heterogeneous system composed of networks of arbitrary numbers of nodes, each with an ar- bitrary number of cores sharing arbitrary amounts of memory. The cost model characterises the components of the architecture by the number of cores, clock speed, and crucially the size of the L2 cache. Second, we extend the HWSkel cost model (CM1) to account for GPU performance. The extended cost model (CM2) is used in the GPU-HWSkel library to automatically nd a good distribution for both a single heterogeneous multicore/GPU node, and clusters of heteroge- neous multicore/GPU nodes. Experiments are carried out on three heterogeneous multicore clusters, four heterogeneous multicore/GPU clusters, and three single heterogeneous multicore/GPU nodes. The results of experimental evaluations for four data parallel benchmarks, i.e. sumEuler, Image matching, Fibonacci, and Matrix Multiplication, show that our combined heterogeneous skeletons and cost models can make good use of resources in heterogeneous systems. Moreover using cores together with a GPU in the same host can deliver good performance either on a single node or on multiple node architectures

    Automatic Performance Optimization on Heterogeneous Computer Systems using Manycore Coprocessors

    Get PDF
    Emerging computer architectures and advanced computing technologies, such as Intel’s Many Integrated Core (MIC) Architecture and graphics processing units (GPU), provide a promising solution to employ parallelism for achieving high performance, scalability and low power consumption. As a result, accelerators have become a crucial part in developing supercomputers. Accelerators usually equip with different types of cores and memory. It will compel application developers to reach challenging performance goals. The added complexity has led to the development of task-based runtime systems, which allow complex computations to be expressed as task graphs, and rely on scheduling algorithms to perform load balancing between all resources of the platforms. Developing good scheduling algorithms, even on a single node, and analyzing them can thus have a very high impact on the performance of current HPC systems. Load balancing strategies, at different levels, will be critical to obtain an effective usage of the heterogeneous hardware and to reduce the impact of communication on energy and performance. Implementing efficient load balancing algorithms, able to manage heterogeneous hardware, can be a challenging task, especially when a parallel programming model for distributed memory architecture. In this paper, we presents several novel runtime approaches to determine the optimal data and task partition on heterogeneous platforms, targeting the Intel Xeon Phi accelerated heterogeneous systems

    Inter-workgroup barrier synchronisation on graphics processing units

    Get PDF
    GPUs are parallel devices that are able to run thousands of independent threads concurrently. Traditional GPU programs are data-parallel, requiring little to no communication, i.e. synchronisation, between threads. However, classical concurrency in the context of CPUs often exploits synchronisation idioms that are not supported on GPUs. By studying such idioms on GPUs, with an aim to facilitate them in a portable way, a wider and more generic space of GPU applications can be made possible. While the breadth of this thesis extends to many aspects of GPU systems, the common thread throughout is the global barrier: an execution barrier that synchronises all threads executing a GPU application. The idea of such a barrier might seem straightforward, however this investigation reveals many challenges and insights. In particular, this thesis includes the following studies: Execution models: while a general global barrier can deadlock due to starvation on GPUs, it is shown that the scheduling guarantees of current GPUs can be used to dynamically create an execution environment that allows for a safe and portable global barrier across a subset of the GPU threads. Application optimisations: a set GPU optimisations are examined that are tailored for graph applications, including one optimisation enabled by the global barrier. It is shown that these optimisations can provided substantial performance improvements, e.g. the barrier optimisation achieves over a 10X speedup on AMD and Intel GPUs. The performance portability of these optimisations is investigated, as their utility varies across input, application, and architecture. Multitasking: because many GPUs do not support preemption, long-running GPU compute tasks (e.g. applications that use the global barrier) may block other GPU functions, including graphics. A simple cooperative multitasking scheme is proposed that allows graphics tasks to meet their deadlines with reasonable overheads.Open Acces
    corecore