2,287 research outputs found

    Using HTML5 to Prevent Detection of Drive-by-Download Web Malware

    Get PDF
    The web is experiencing an explosive growth in the last years. New technologies are introduced at a very fast-pace with the aim of narrowing the gap between web-based applications and traditional desktop applications. The results are web applications that look and feel almost like desktop applications while retaining the advantages of being originated from the web. However, these advancements come at a price. The same technologies used to build responsive, pleasant and fully-featured web applications, can also be used to write web malware able to escape detection systems. In this article we present new obfuscation techniques, based on some of the features of the upcoming HTML5 standard, which can be used to deceive malware detection systems. The proposed techniques have been experimented on a reference set of obfuscated malware. Our results show that the malware rewritten using our obfuscation techniques go undetected while being analyzed by a large number of detection systems. The same detection systems were able to correctly identify the same malware in its original unobfuscated form. We also provide some hints about how the existing malware detection systems can be modified in order to cope with these new techniques.Comment: This is the pre-peer reviewed version of the article: \emph{Using HTML5 to Prevent Detection of Drive-by-Download Web Malware}, which has been published in final form at \url{http://dx.doi.org/10.1002/sec.1077}. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archivin

    Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks

    Full text link
    Malware still constitutes a major threat in the cybersecurity landscape, also due to the widespread use of infection vectors such as documents. These infection vectors hide embedded malicious code to the victim users, facilitating the use of social engineering techniques to infect their machines. Research showed that machine-learning algorithms provide effective detection mechanisms against such threats, but the existence of an arms race in adversarial settings has recently challenged such systems. In this work, we focus on malware embedded in PDF files as a representative case of such an arms race. We start by providing a comprehensive taxonomy of the different approaches used to generate PDF malware, and of the corresponding learning-based detection systems. We then categorize threats specifically targeted against learning-based PDF malware detectors, using a well-established framework in the field of adversarial machine learning. This framework allows us to categorize known vulnerabilities of learning-based PDF malware detectors and to identify novel attacks that may threaten such systems, along with the potential defense mechanisms that can mitigate the impact of such threats. We conclude the paper by discussing how such findings highlight promising research directions towards tackling the more general challenge of designing robust malware detectors in adversarial settings

    Adversarial Detection of Flash Malware: Limitations and Open Issues

    Full text link
    During the past four years, Flash malware has become one of the most insidious threats to detect, with almost 600 critical vulnerabilities targeting Adobe Flash disclosed in the wild. Research has shown that machine learning can be successfully used to detect Flash malware by leveraging static analysis to extract information from the structure of the file or its bytecode. However, the robustness of Flash malware detectors against well-crafted evasion attempts - also known as adversarial examples - has never been investigated. In this paper, we propose a security evaluation of a novel, representative Flash detector that embeds a combination of the prominent, static features employed by state-of-the-art tools. In particular, we discuss how to craft adversarial Flash malware examples, showing that it suffices to manipulate the corresponding source malware samples slightly to evade detection. We then empirically demonstrate that popular defense techniques proposed to mitigate evasion attempts, including re-training on adversarial examples, may not always be sufficient to ensure robustness. We argue that this occurs when the feature vectors extracted from adversarial examples become indistinguishable from those of benign data, meaning that the given feature representation is intrinsically vulnerable. In this respect, we are the first to formally define and quantitatively characterize this vulnerability, highlighting when an attack can be countered by solely improving the security of the learning algorithm, or when it requires also considering additional features. We conclude the paper by suggesting alternative research directions to improve the security of learning-based Flash malware detectors
    • …
    corecore