2,505 research outputs found

    A study into prolonging Wireless Sensor Network lifetime during disaster scenarios

    Get PDF
    A Wireless Sensor Network (WSN) has wide potential for many applications. It can be employed for normal monitoring applications, for example, the monitoring of environmental conditions such as temperature, humidity, light intensity and pressure. A WSN is deployed in an area to sense these environmental conditions and send information about them to a sink. In certain locations, disasters such as forest fires, floods, volcanic eruptions and earth-quakes can happen in the monitoring area. During the disaster, the events being monitored have the potential to destroy the sensing devices; for example, they can be sunk in a flood, burnt in a fire, damaged in harmful chemicals, and burnt in volcano lava etc. There is an opportunity to exploit the energy of these nodes before they are totally destroyed to save the energy of the other nodes in the safe area. This can prolong WSN lifetime during the critical phase. In order to investigate this idea, this research proposes a new routing protocol called Maximise Unsafe Path (MUP) routing using Ipv6 over Low power Wireless Personal Area Networks (6LoWPAN). The routing protocol aims to exploit the energy of the nodes that are going to be destroyed soon due to the environment, by concentrating packets through these nodes. MUP adapts with the environmental conditions. This is achieved by classifying four different levels of threat based on the sensor reading information and neighbour node condition, and represents this as the node health status, which is included as one parameter in the routing decision. High priority is given to a node in an unsafe condition compared to another node in a safer condition. MUP does not allow packet routing through a node that is almost failed in order to avoid packet loss when the node fails. To avoid the energy wastage caused by selecting a route that requires a higher energy cost to deliver a packet to the sink, MUP always forwards packets through a node that has the minimum total path cost. MUP is designed as an extension of RPL, an Internet Engineering Task Force (IETF) standard routing protocol in a WSN, and is implemented in the Contiki Operating System (OS). The performance of MUP is evaluated using simulations and test-bed experiments. The results demonstrate that MUP provides a longer network lifetime during a critical phase of typically about 20\% when compared to RPL, but with a trade-off lower packet delivery ratio and end-to-end delay performances. This network lifetime improvement is crucial for the WSN to operate for as long as possible to detect and monitor the environment during a critical phase in order to save human life, minimise loss of property and save wildlife

    A Cognitive Framework to Secure Smart Cities

    Get PDF
    The advancement in technology has transformed Cyber Physical Systems and their interface with IoT into a more sophisticated and challenging paradigm. As a result, vulnerabilities and potential attacks manifest themselves considerably more than before, forcing researchers to rethink the conventional strategies that are currently in place to secure such physical systems. This manuscript studies the complex interweaving of sensor networks and physical systems and suggests a foundational innovation in the field. In sharp contrast with the existing IDS and IPS solutions, in this paper, a preventive and proactive method is employed to stay ahead of attacks by constantly monitoring network data patterns and identifying threats that are imminent. Here, by capitalizing on the significant progress in processing power (e.g. petascale computing) and storage capacity of computer systems, we propose a deep learning approach to predict and identify various security breaches that are about to occur. The learning process takes place by collecting a large number of files of different types and running tests on them to classify them as benign or malicious. The prediction model obtained as such can then be used to identify attacks. Our project articulates a new framework for interactions between physical systems and sensor networks, where malicious packets are repeatedly learned over time while the system continually operates with respect to imperfect security mechanisms

    Enforcement in Dynamic Spectrum Access Systems

    Get PDF
    The spectrum access rights granted by the Federal government to spectrum users come with the expectation of protection from harmful interference. As a consequence of the growth of wireless demand and services of all types, technical progress enabling smart agile radio networks, and on-going spectrum management reform, there is both a need and opportunity to use and share spectrum more intensively and dynamically. A key element of any framework for managing harmful interference is the mechanism for enforcement of those rights. Since the rights to use spectrum and to protection from harmful interference vary by band (licensed/unlicensed, legacy/newly reformed) and type of use/users (primary/secondary, overlay/underlay), it is reasonable to expect that the enforcement mechanisms may need to vary as well.\ud \ud In this paper, we present a taxonomy for evaluating alternative mechanisms for enforcing interference protection for spectrum usage rights, with special attention to the potential changes that may be expected from wider deployment of Dynamic Spectrum Access (DSA) systems. Our exploration of how the design of the enforcement regime interacts with and influences the incentives of radio operators under different rights regimes and market scenarios is intended to assist in refining thinking about appropriate access rights regimes and how best to incentivize investment and growth in more efficient and valuable uses of the radio frequency spectrum

    Keberkesanan program simulasi penapis sambutan dedenyut terhingga (FIR) terhadap kefahaman pelajar kejuruteraan elektrik

    Get PDF
    Kefahaman merupakan aset bagi setiap pelajar. Ini kerana melalui kefahaman pelajar dapat mengaplikasikan konsep yang dipelajari di dalam dan di luar kelas. Kajian ini dijalankan bertujuan menilai keberkesanan program simulasi penapis sambutan dedenyut terhingga (FIR) terhadap kefahaman pelajar kejuruteraan elektrik FKEE, UTHM dalam mata pelajaran Pemprosesan Isyarat Digital (DSP) bagi topik penapis FIR. Metodologi kajian ini berbentuk kaedah reka bentuk kuasi�eksperimental ujian pra-pasca bagi kumpulan-kumpulan tidak seimbang. Seramai 40 responden kajian telah dipilih dan dibahagi secara rawak kepada dua kllmpulan iaitu kumpulan rawatan yang menggunakan program simulasi penapis FIR dan kumpulan kawalan yang menggunakan kaedah pembelajaran berorientasikan modul pembelajaran DSP UTHM. Setiap responden menduduki dua ujian pencapaian iaitu ujian pra dan ujian pasca yang berbentuk kuiz. Analisis data berbentuk deskriptif dan inferens dilakllkan dengan menggunakan Peri sian Statistical Package for Social Science (SPSS) versi 11.0. Dapatan kajian menunjukkan kedua-dua kumpulan pelajar telah mengalami peningkatan dari segi kefahaman iaitu daripada tahap tidak memuaskan kepada tahap kepujian selepas menggunakan kaedah pembelajaran yang telah ditetapkan bagi kumpulan masing-masing. Walaubagaimanapun, pelajar kumpulan rawatan menunjukkan peningkatan yang lebih tinggi sedikit berbanding pelajar kumpulan kawalan. Namun begitu, dapatan kajian secara ujian statistik menunjukkan tidak terdapat perbezaan yang signifikan dari segi pencapaian markah ujian pasca di antara pelajar kumpulan rawatan dengan pelajar kumpulan kawalan. Sungguhpun begitu, penggunaan program simulasi penapis FIR telah membantu dalam peningkatan kefahaman pelajar mengenai topik penapis FIR

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Detecting malfunction in wireless sensor networks

    Get PDF
    The objective of this thesis is to detect malfunctioning sensors in wireless sensor networks. The ability to detect abnormality is critical to the security of any sensor network. However, the ability to detect a faulty wireless sensor is not trivial. Controlled repeatable experiments are difficult in wireless channels. A Redhat Linux. 7.0 Wireless Emulation Dynamic Switch software was used to solve this problem. Six nodes were configured with a node acting as a base station. The nodes were all part of a cell. This means that every node could communicate with all other nodes. A client-server program simulated the background traffic. Another program simulated a faulty node. A node was isolated as the faulty node while all other nodes were good. The experiment ran for several hours and the data was captured with tcpdump. The data was analyzed to conclusions based on a statistical comparison of good node versus bad node. The statistical delay on the good node was an average of 0.69 ms while the standard deviation was 0.49. This was much better than the delay on the bad node that was 0.225192 s with a standard deviation of 0.89. This huge difference in the delay indicated that the faulty node was detected statistically. A threshold value of I ms was chosen. The good node was within this value about 98% of the time. The bad node on the other hand was far out of this range and was definitely detected. The channel utilization data provided the same conclusion

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201
    • …
    corecore