27,798 research outputs found

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems

    Get PDF
    Copyright @ 2011 Taylor & Francis.Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant no. 70931001, the Funds for Creative Research Groups of China under Grant no. 71021061, the National Natural Science Foundation (NNSF) of China under Grant 71001018, Grant no. 61004121 and Grant no. 70801012 and the Fundamental Research Funds for the Central Universities Grant no. N090404020, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant no. EP/E060722/01 and Grant EP/E060722/02, and the Hong Kong Polytechnic University under Grant G-YH60
    corecore