3,122 research outputs found

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    OPTIMIZED ARCHITECTURE DESIGN AND IMPLEMENTATION OF OBJECT TRACKING ALGORITHM ON FPGA

    Get PDF
    FPGA based Object tracking implementation is one of the most recent video surveillance applications in embedded systems. In general, FPGA implementation is more efficient than general purpose computers in attaining high throughput due to its parallelism and execution speed. The system need to be designed on a standard frame rate in such a way to achieve optimal performance in real time environment. Optimal design of a system is dependent on minimizing the cost, area (device utility) and power while achieving the required speed. Past research work that investigated object tracking systems' implementation on FPGA achieved a significantly high throughput but have shown high device utilization. This research work aims at optimizing the device utilization under real time constraints. The Adaptive Hybrid Difference algorithm (AHD), which is used to detect the moving objects, was chosen to be implemented on FPGA due to its computation ability and efficiency with regard to hardware implementation. AHD can work at various lighting conditions automatically by determining the adaptive threshold in every period of time

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    FPGA structures for high speed and low overhead dynamic circuit specialization

    Get PDF
    A Field Programmable Gate Array (FPGA) is a programmable digital electronic chip. The FPGA does not come with a predefined function from the manufacturer; instead, the developer has to define its function through implementing a digital circuit on the FPGA resources. The functionality of the FPGA can be reprogrammed as desired and hence the name “field programmable”. FPGAs are useful in small volume digital electronic products as the design of a digital custom chip is expensive. Changing the FPGA (also called configuring it) is done by changing the configuration data (in the form of bitstreams) that defines the FPGA functionality. These bitstreams are stored in a memory of the FPGA called configuration memory. The SRAM cells of LookUp Tables (LUTs), Block Random Access Memories (BRAMs) and DSP blocks together form the configuration memory of an FPGA. The configuration data can be modified according to the user’s needs to implement the user-defined hardware. The simplest way to program the configuration memory is to download the bitstreams using a JTAG interface. However, modern techniques such as Partial Reconfiguration (PR) enable us to configure a part in the configuration memory with partial bitstreams during run-time. The reconfiguration is achieved by swapping in partial bitstreams into the configuration memory via a configuration interface called Internal Configuration Access Port (ICAP). The ICAP is a hardware primitive (macro) present in the FPGA used to access the configuration memory internally by an embedded processor. The reconfiguration technique adds flexibility to use specialized ci rcuits that are more compact and more efficient t han t heir b ulky c ounterparts. An example of such an implementation is the use of specialized multipliers instead of big generic multipliers in an FIR implementation with constant coefficients. To specialize these circuits and reconfigure during the run-time, researchers at the HES group proposed the novel technique called parameterized reconfiguration that can be used to efficiently and automatically implement Dynamic Circuit Specialization (DCS) that is built on top of the Partial Reconfiguration method. It uses the run-time reconfiguration technique that is tailored to implement a parameterized design. An application is said to be parameterized if some of its input values change much less frequently than the rest. These inputs are called parameters. Instead of implementing these parameters as regular inputs, in DCS these inputs are implemented as constants, and the application is optimized for the constants. For every change in parameter values, the design is re-optimized (specialized) during run-time and implemented by reconfiguring the optimized design for a new set of parameters. In DCS, the bitstreams of the parameterized design are expressed as Boolean functions of the parameters. For every infrequent change in parameters, a specialized FPGA configuration is generated by evaluating the corresponding Boolean functions, and the FPGA is reconfigured with the specialized configuration. A detailed study of overheads of DCS and providing suitable solutions with appropriate custom FPGA structures is the primary goal of the dissertation. I also suggest different improvements to the FPGA configuration memory architecture. After offering the custom FPGA structures, I investigated the role of DCS on FPGA overlays and the use of custom FPGA structures that help to reduce the overheads of DCS on FPGA overlays. By doing so, I hope I can convince the developer to use DCS (which now comes with minimal costs) in real-world applications. I start the investigations of overheads of DCS by implementing an adaptive FIR filter (using the DCS technique) on three different Xilinx FPGA platforms: Virtex-II Pro, Virtex-5, and Zynq-SoC. The study of how DCS behaves and what is its overhead in the evolution of the three FPGA platforms is the non-trivial basis to discover the costs of DCS. After that, I propose custom FPGA structures (reconfiguration controllers and reconfiguration drivers) to reduce the main overhead (reconfiguration time) of DCS. These structures not only reduce the reconfiguration time but also help curbing the power hungry part of the DCS system. After these chapters, I study the role of DCS on FPGA overlays. I investigate the effect of the proposed FPGA structures on Virtual-Coarse-Grained Reconfigurable Arrays (VCGRAs). I classify the VCGRA implementations into three types: the conventional VCGRA, partially parameterized VCGRA and fully parameterized VCGRA depending upon the level of parameterization. I have designed two variants of VCGRA grids for HPC image processing applications, namely, the MAC grid and Pixie. Finally, I try to tackle the reconfiguration time overhead at the hardware level of the FPGA by customizing the FPGA configuration memory architecture. In this part of my research, I propose to use a parallel memory structure to improve the reconfiguration time of DCS drastically. However, this improvement comes with a significant overhead of hardware resources which will need to be solved in future research on commercial FPGA configuration memory architectures

    Uses and Challenges of Collecting LiDAR Data from a Growing Autonomous Vehicle Fleet: Implications for Infrastructure Planning and Inspection Practices

    Get PDF
    Autonomous vehicles (AVs) that utilize LiDAR (Light Detection and Ranging) and other sensing technologies are becoming an inevitable part of transportation industry. Concurrently, transportation agencies are increasingly challenged with the management and tracking of large-scale highway asset inventory. LiDAR has become popular among transportation agencies for highway asset management given its advantage over traditional surveying methods. The affordability of LiDAR technology is increasing day by day. Given this, there will be substantial challenges and opportunities for the utilization of big data resulting from the growth of AVs with LiDAR. A proper understanding of the data size generated from this technology will help agencies in making decisions regarding storage, management, and transmission of the data. The original raw data generated from the sensor shrinks a lot after filtering and processing following the Cache county Road Manual and storing into ASPRS recommended (.las) file format. In this pilot study, it is found that while considering the road centerline as the vehicle trajectory larger portion of the data fall into the right of way section compared to the actual vehicle trajectory in Cache County, UT. And there is a positive relation between the data size and vehicle speed in terms of the travel lanes section given the nature of the selected highway environment

    Efficient Hardware Architectures for Accelerating Deep Neural Networks: Survey

    Get PDF
    In the modern-day era of technology, a paradigm shift has been witnessed in the areas involving applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). Specifically, Deep Neural Networks (DNNs) have emerged as a popular field of interest in most AI applications such as computer vision, image and video processing, robotics, etc. In the context of developed digital technologies and the availability of authentic data and data handling infrastructure, DNNs have been a credible choice for solving more complex real-life problems. The performance and accuracy of a DNN is a way better than human intelligence in certain situations. However, it is noteworthy that the DNN is computationally too cumbersome in terms of the resources and time to handle these computations. Furthermore, general-purpose architectures like CPUs have issues in handling such computationally intensive algorithms. Therefore, a lot of interest and efforts have been invested by the research fraternity in specialized hardware architectures such as Graphics Processing Unit (GPU), Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), and Coarse Grained Reconfigurable Array (CGRA) in the context of effective implementation of computationally intensive algorithms. This paper brings forward the various research works carried out on the development and deployment of DNNs using the aforementioned specialized hardware architectures and embedded AI accelerators. The review discusses the detailed description of the specialized hardware-based accelerators used in the training and/or inference of DNN. A comparative study based on factors like power, area, and throughput, is also made on the various accelerators discussed. Finally, future research and development directions are discussed, such as future trends in DNN implementation on specialized hardware accelerators. This review article is intended to serve as a guide for hardware architectures for accelerating and improving the effectiveness of deep learning research.publishedVersio

    Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients

    Get PDF
    This is the Accepted Manuscript version of the following article: I. Mporas, D. Triantafyllopoulos, V. Megalooikonomou, “Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients”, Journal of Medical Systems, Vol. 40(45), December 2015. The final published versions is available at: https://link.springer.com/article/10.1007%2Fs10916-015-0403-3 © Springer Science+Business Media New York 2015.New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient’s physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.Peer reviewedFinal Accepted Versio
    • …
    corecore