921 research outputs found

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Contemporary Methods for Graph Coloring as an Example of Discrete Optimization

    Get PDF
    This paper provides an insight into graph coloringapplication of the contemporary heuristic methods. It discusses avariety of algorithmic solutions for The Graph Coloring Problem(GCP) and makes recommendations for implementation. TheGCP is the NP-hard problem, which aims at finding the minimumnumber of colors for vertices in such a way, that none of twoadjacent vertices are marked with the same color.With the adventof multicore processing technology, the metaheuristic approachto solving GCP reemerged as means of discrete optimization. Toexplain the phenomenon of these methods, the author makes athorough survey of AI-based algorithms for GCP, while pointingout the main differences between all these techniques

    Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis

    Get PDF
    Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametri-zation of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgico

    An improved multi-agent simulation methodology for modelling and evaluating wireless communication systems resource allocation algorithms

    Get PDF
    Multi-Agent Systems (MAS) constitute a well known approach in modelling dynamical real world systems. Recently, this technology has been applied to Wireless Communication Systems (WCS), where efficient resource allocation is a primary goal, for modelling the physical entities involved, like Base Stations (BS), service providers and network operators. This paper presents a novel approach in applying MAS methodology to WCS resource allocation by modelling more abstract entities involved in WCS operation, and especially the concurrent network procedures (services). Due to the concurrent nature of a WCS, MAS technology presents a suitable modelling solution. Services such as new call admission, handoff, user movement and call termination are independent to one another and may occur at the same time for many different users in the network. Thus, the required network procedures for supporting the above services act autonomously, interact with the network environment (gather information such as interference conditions), take decisions (e.g. call establishment), etc, and can be modelled as agents. Based on this novel simulation approach, the agent cooperation in terms of negotiation and agreement becomes a critical issue. To this end, two negotiation strategies are presented and evaluated in this research effort and among them the distributed negotiation and communication scheme between network agents is presented to be highly efficient in terms of network performance. The multi-agent concept adapted to the concurrent nature of large scale WCS is, also, discussed in this paper

    Stochastic arrays and learning networks

    Get PDF
    This thesis presents a study of stochastic arrays and learning networks. These arrays will be shown to consist of simple elements utilising probabilistic coding techniques which may interact with a random and noisy environment to produce useful results. Such networks have generated considerable interest since it is possible to design large parallel self-organising arrays of these elements which are trained by example rather than explicit instruction. Once the learning process has been completed, they then have the potential ability to form generalisations, perform global optimisation of traditionally difficult problems such as routing and incorporate an associative memory capability which can enable such tasks as image recognition and reconstruction to be performed, even when given a partial or noisy view of the target. Since the method of operation of such elements is thought to emulate the basic properties of the neurons of the brain, these arrays have been termed neural 'networks. The research demonstrates the use of stochastic elements for digital signal processing by presenting a novel systolic array, utilising a simple, replicated cell structure, which is shown to perform the operations of Cyclic Correlation and the Discrete Fourier Transform on inherently random and noisy probabilistic single bit inputs. This work is then extended into the field of stochastic learning automata and to neural networks by examining the Associative Reward-Punish (A(_R-P)) pattern recognising learning automaton. The thesis concludes that all the networks described may potentially be generalised to simple variations of one standard probabilistic element utilising stochastic coding, whose properties resemble those of biological neurons. A novel study is presented which describes how a powerful deterministic algorithm, previously considered to be biologically unviable due to its nature, may be represented in this way. It is expected that combinations of these methods may lead to a series of useful hybrid techniques for training networks. The nature of the element generalisation is particularly important as it reveals the potential for encoding successful algorithms in cheap, simple hardware with single bit interconnections. No claim is made that the particular algorithms described are those actually utilised by the brain, only to demonstrate that those properties observed of biological neurons are capable of endowing collective computational ability and that actual biological algorithms may perhaps then become apparent when viewed in this light

    A NOVEL ALGORITHM BASED ON CASCADING OF NEURAL NETWORK MODELS AND WAVELET TRANSFORM FOR IMAGE ENHANCEMENT.

    Get PDF
    Image enhancement and restoration is pre-request of computer vision. The distortion and degradation of image suffered the process of pattern matching and quality of image. Wavelet is very important transform function play a role in image enhancement and image de-noising. The concept of wavelet used as soft thresholding and hard thresholding. A processing of data through wavelet is very efficient in process of neural network. In this paper we discuss the proposed algorithm for image enhancement based on self organized map network and wavelet transform. Basically self organized map network is unsupervised training mechanisms of pattern, due to this reason the processing of network is very fast in compression of another artificial neural network method. And the combination of wavelet and self organized map network have great advantage over conventional method such as histogram equalization and multi-point histogram equalization and another conventional technique of image enhancement

    A Useful Metaheuristic for Dynamic Channel Assignment in Mobile Cellular Systems

    Get PDF
    The prime objective of a Channel Assignment Problem (CAP) is to assign appropriate number of required channels to each cell in a way to achieve both efficient frequency spectrum utilization and minimization of interference effects (by satisfying a number of channel reuse constraints). Dynamic Channel Assignment (DCA) assigns the channels to the cells dynamically according to traffic demand, and hence, can provide higher capacity (or lower call blocking probability), fidelity and quality of service than the fixed assignment schemes. Channel assignment algorithms are formulated as combinatorial optimization problems and are NP-hard. Devising a DCA, that is practical, efficient, and which can generate high quality assignments, is challenging. Though Metaheuristic Search techniques like Evolutionary Algorithms, Differential Evolution, Particle Swarm Optimization prove effective in the solution of Fixed Channel Assignment (FCA) problems but they still require high computational time and therefore may be inefficient for DCA. A number of approaches have been proposed for the solution of DCA problem but the high complexity of these proposed approaches makes them unsuitable/less efficient for practical use. Therefore, this paper presents an effective and efficient Hybrid Discrete Binary Differential Evolution Algorithm (HDB-DE) for the solution of DCA Proble
    • 

    corecore