40 research outputs found

    Named data networking for efficient IoT-based disaster management in a smart campus

    Get PDF
    Disasters are uncertain occasions that can impose a drastic impact on human life and building infrastructures. Information and Communication Technology (ICT) plays a vital role in coping with such situations by enabling and integrating multiple technological resources to develop Disaster Management Systems (DMSs). In this context, a majority of the existing DMSs use networking architectures based upon the Internet Protocol (IP) focusing on location-dependent communications. However, IP-based communications face the limitations of inefficient bandwidth utilization, high processing, data security, and excessive memory intake. To address these issues, Named Data Networking (NDN) has emerged as a promising communication paradigm, which is based on the Information-Centric Networking (ICN) architecture. An NDN is among the self-organizing communication networks that reduces the complexity of networking systems in addition to provide content security. Given this, many NDN-based DMSs have been proposed. The problem with the existing NDN-based DMS is that they use a PULL-based mechanism that ultimately results in higher delay and more energy consumption. In order to cater for time-critical scenarios, emergence-driven network engineering communication and computation models are required. In this paper, a novel DMS is proposed, i.e., Named Data Networking Disaster Management (NDN-DM), where a producer forwards a fire alert message to neighbouring consumers. This makes the nodes converge according to the disaster situation in a more efficient and secure way. Furthermore, we consider a fire scenario in a university campus and mobile nodes in the campus collaborate with each other to manage the fire situation. The proposed framework has been mathematically modeled and formally proved using timed automata-based transition systems and a real-time model checker, respectively. Additionally, the evaluation of the proposed NDM-DM has been performed using NS2. The results prove that the proposed scheme has reduced the end-to-end delay up from 2% to 10% and minimized up to 20% energy consumption, as energy improved from 3% to 20% compared with a state-of-the-art NDN-based DMS

    A Study of Routing Protocols for Ad-Hoc Network Based on Named Data Networking

    Get PDF
    電気通信大学202

    Enabling Correct Interest Forwarding and Retransmissions in a Content Centric Network

    Full text link
    We show that the mechanisms used in the name data networking (NDN) and the original content centric networking (CCN) architectures may not detect Interest loops, even if the network in which they operate is static and no faults occur. Furthermore, we show that no correct Interest forwarding strategy can be defined that allows Interest aggregation and attempts to detect Interest looping by identifying Interests uniquely. We introduce SIFAH (Strategy for Interest Forwarding and Aggregation with Hop-Counts), the first Interest forwarding strategy shown to be correct under any operational conditions of a content centric network. SIFAH operates by having forwarding information bases (FIBs) store the next hops and number of hops to named content, and by having each Interest state the name of the requested content and the hop count from the router forwarding an Interest to the content. We present the results of simulation experiments using the ndnSIM simulator comparing CCN and NDN with SIFAH. The results of these experiments illustrate the negative impact of undetected Interest looping when Interests are aggregated in CCN and NDN, and the performance advantages of using SIFAH

    Applying named data networking in mobile ad hoc networks

    Get PDF
    This thesis presents the Name-based Mobile Ad-hoc Network (nMANET) approach to content distribution that ensure and enables responsible research on applying named data networking protocol in mobile ad-hoc networks. The test framework of the nMANET approach allows reproducibility of experiments and validation of expected results based on analysis of experimental data. The area of application for nMANETs is the distribution of humanitarian information in emergency scenarios. Named-Data Networking (NDN) and ad-hoc mobile communication allow exchange of emergency information in situations where central services such as cellular towers and electric systems are disrupted. The implemented prototype enables researchers to reproduce experiments on content distribution that consider constraints on mobile resources, such as the remaining power of mobile devices and available network bandwidth. The nMANET framework validates a set of experiments by measuring network traffic and energy consumption from both real mobile devices and those in a simulated environment. Additionally, this thesis presents results from experiments in which the nMANET forwarding strategies and traditional wireless services, such as hotpost, are analysed and compared. This experimental data represents the evidence that supports and validates the methodology presented in this thesis. The design and implementation of an nMANET prototype, the Java NDN Forwarder Daemon (JNFD) is presented as a testing framework, which follows the principles of continuous integration, continuous testing and continuous deployment. This testing framework is used to validate JNFD and IP-based technologies, such as HTTP in a MANET using the OLSR routing protocol, as well as traditional wireless infrastructure mode wireless. The set of experiments executed, in a small network of Android smart-phones connected in ad-hoc mode and in a virtual ad-hoc network simulator show the advantages of reproducibility using nMANET features. JNFD is open source, all experiments are scripted, they are repeatable and scalable. Additionally, JNFD utilises real GPS traces to simulate mobility of nodes during experiments. This thesis provides experimental evidence to show that nMANET allows reproducibility and validation of a wide range of future experiments applying NDN on MANETs

    A down-to-earth integration of Named Data Networking in the real-world IoT

    Get PDF
    International audienceThe IEEE802.15.4 wireless technology is one of the enablers of the Internet of Things. It allows constrained devices to communicate with a satisfactory data rate, payload size and distance range, all with reduced energy consumption. To provide IoT devices with a global Internet identity, 6LoWPAN defines the IPv6 adaptation to communicate over IEEE802.15.4. However, this integration still needs additional protocols to support other IoT requirements, which makes the IP stack in IoT devices more complex and therefore shows the limitations of the IP model to support the needs of future Internet. Named Data Networking represents an alternative that can natively support IoT constraints including mobility, security and human readable data names. This paper is a synthesis of an ongoing work that investigates the integration of NDN with IEEE802.15.4 for constrained IoT devices. The proposed design has been implemented in a real-world smart agriculture scenario, and evaluated by simulation focusing on energy consumption and network overhead in comparison to IP-based protocols

    Queuing Modelling and Performance Analysis of Content Transfer in Information Centric Networks

    Get PDF
    With the rapid development of multimedia services and wireless technology, new generation of network traffic like short-form video and live streaming have put tremendous pressure on the current network infrastructure. To meet the high bandwidth and low latency needs of this new generation of traffic, the focus of Internet architecture has moved from host-centric end-to-end communication to requester-driven content retrieval. This shift has motivated the development of Information-Centric Networking (ICN), a promising new paradigm for the future Internet. ICN aims to improve information retrieval on the Internet by identifying and routing data using unified names. In-network caching and the use of a pending interest table (PIT) are two key features of ICN that are designed to efficiently handle bulk data dissemination and retrieval, as well as reduce bandwidth consumption. Performance analysis has been and continues to be key research interests of ICN. This thesis starts with the evaluation of content delivery delays in ICN. The main component of delay is composed of propagation delay, transmission delay,processing delay and queueing delay. To characterize the main components of content delivery delay, queueing network theory has been exploited to coordinate with cache miss rate in modelling the content delivery time in ICN. Moreover, different topologies and network conditions have been taken into account to evaluate the performance of content transfer in ICN. ICN is intrinsically compatible with wireless networks. To evaluate the performance of content transfer in wireless networks, an analytical model to evaluate the mean service time based on consumer and provider mobility has been proposed. The accuracy of the analytical model is validated through extensive simulation experiments. Finally, the analytical model is used to evaluate the impact of key metrics, such as the cache size, content size and content popularity on the performance of PIT and content transfer in ICN. Pending interest table (PIT) is one of the essential components of the ICN forwarding plane, which is responsible for stateful routing in ICN. It also aggregates the same interests to alleviate request flooding and network congestion. The aggregation feature of PIT improves performance of content delivery in ICN. Thus, having an analytical model to characterize the impact of PIT on content delivery time could allow for a more precise evaluation of content transfer performance. In parallel, if the size of the PIT is not properly determined, the interest drop rate may be too high, resulting in a reduction in quality of service for consumers as their requests have to be retransmitted. Furthermore, PIT is a costly resource as it requires to operate at wirespeed in the forwarding plane. Therefore, in order to ensure that interests drop rate less than the requirement, an analytical model of PIT occupancy has been developed to determine the minimum PIT size. In this thesis, the proposed analytical models are used to efficiently and accurately evaluate the performance of ICN content transfer and investigate the key component of ICN forwarding plane. Leveraging the insights discovered by these analytical models, the minimal PIT size and proper interest timeout can be determined to enhance the performance of ICN. To widen the outcomes achieved in the thesis, several interesting yet challenging research directions are pointed out
    corecore