10 research outputs found

    Adaptive Shape Servoing of Elastic Rods using Parameterized Regression Features and Auto-Tuning Motion Controls

    Full text link
    In this paper, we present a new vision-based method to control the shape of elastic rods with robot manipulators. Our new method computes parameterized regression features from online sensor measurements that enable to automatically quantify the object's configuration and establish an explicit shape servo-loop. To automatically deform the rod into a desired shape, our adaptive controller iteratively estimates the differential transformation between the robot's motion and the relative shape changes; This valuable capability allows to effectively manipulate objects with unknown mechanical models. An auto-tuning algorithm is introduced to adjust the robot's shaping motion in real-time based on optimal performance criteria. To validate the proposed theory, we present a detailed numerical and experimental study with vision-guided robotic manipulators.Comment: 13 pages, 22 figures, 2 table

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Parametric mechanical design and optimisation of the Canterbury Hand.

    Get PDF
    As part of worldwide research humanoid robots have been developed for household, industrial and exploratory applications. If such robots are to interact with people and human created environments they will require human-like hands. The objective of this thesis was the parametric design and optimisation of a dexterous, and anthropomorphic robotic end effector. Known as the ‘Canterbury Hand’ it has 11 degree of freedoms with four fingers and a thumb. The hand has applications for dexterous teleoperation and object manipulation in industrial, hazardous or uncertain environments such as orbital robotics. The human hand was analysed so that the Canterbury Hand could copy its motions, appearance and grasp types. An analysis of the current literature on experimental prosthetic and robotic hands was also carried out. A disadvantage of many of these hand designs was that they were remotely powered using large, heavy actuator packs. The advantage of the Canterbury Hand is that it has been designed to hold the motors, wires, and circuit boards entirely within itself; although a belt carried battery pack is required. The hand was modelled using a parametric 3D computer aided design (CAD) program. Two different configurations of the hand were created in the model. One configuration, as a dexterous robot hand, used Ø13mm 3 Watt DC motors, while the other used Ø10mm, 0.5 Watt DC motors (although this hand is still slightly too large for a general prosthesis). The parts within the hand were modelled to permit changes to the geometry. This was necessary for the optimisation process. The bearing geometry of the finger and thumb linkages, as well as the thumb rotation axis was optimised for anthropomorphic motion, appearance and increased force output. A design table within a spreadsheet was created to interact with the CAD models of the hand to quickly implement the optimised geometry. The work reported in this thesis has shown the possibilities for parametric design and optimisation of an anthropomorphic, dexterous robotic hand

    A dynamic and uncalibrated method to visually servo-control elastic deformations by fully-constrained robotic grippers

    No full text

    Parametric mechanical design and optimisation of the Canterbury Hand.

    Get PDF
    As part of worldwide research humanoid robots have been developed for household, industrial and exploratory applications. If such robots are to interact with people and human created environments they will require human-like hands. The objective of this thesis was the parametric design and optimisation of a dexterous, and anthropomorphic robotic end effector. Known as the ‘Canterbury Hand’ it has 11 degree of freedoms with four fingers and a thumb. The hand has applications for dexterous teleoperation and object manipulation in industrial, hazardous or uncertain environments such as orbital robotics. The human hand was analysed so that the Canterbury Hand could copy its motions, appearance and grasp types. An analysis of the current literature on experimental prosthetic and robotic hands was also carried out. A disadvantage of many of these hand designs was that they were remotely powered using large, heavy actuator packs. The advantage of the Canterbury Hand is that it has been designed to hold the motors, wires, and circuit boards entirely within itself; although a belt carried battery pack is required. The hand was modelled using a parametric 3D computer aided design (CAD) program. Two different configurations of the hand were created in the model. One configuration, as a dexterous robot hand, used Ø13mm 3 Watt DC motors, while the other used Ø10mm, 0.5 Watt DC motors (although this hand is still slightly too large for a general prosthesis). The parts within the hand were modelled to permit changes to the geometry. This was necessary for the optimisation process. The bearing geometry of the finger and thumb linkages, as well as the thumb rotation axis was optimised for anthropomorphic motion, appearance and increased force output. A design table within a spreadsheet was created to interact with the CAD models of the hand to quickly implement the optimised geometry. The work reported in this thesis has shown the possibilities for parametric design and optimisation of an anthropomorphic, dexterous robotic hand

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    corecore