513 research outputs found

    A dynamic access point allocation algorithm for dense wireless LANs using potential game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm

    A Dynamic Access Point Allocation Algorithm for Dense Wireless LANs Using Potential Game

    Get PDF
    This work introduces an innovative Access Point (AP) allocation algorithm for dense Wi-Fi networks, which relies on a centralised potential game developed in a Software-Defined Wireless Networking (SDWN)-based framework. The proposed strategy optimises the allocation of the Wi-Fi stations (STAs) to APs and allows their dynamic reallocation according to possible changes in the capacity of the Wi-Fi network. This paper illustrates the design of the proposed framework based on SDWN and the implementation of the potential game-based algorithm, which includes two possible strategies. The main novel contribution of this work is that the algorithm allows us to efficiently reallocate the STAs by considering external interference, which can negatively affect the capacities of the APs handled by the SDWN controller. Moreover, the paper provides a detailed performance analysis of the algorithm, which describes the significant improvements achieved with respect to the state of the art. Specifically, the results have been compared against the AP selection considered by the IEEE 802.11 standards and another centralised algorithm dealing with the same problem, in terms of the data bit rate provided to the STAs, their dissatisfaction and Quality of Experience (QoE). Finally, the paper analyses the trade-off between efficient performance and the computational complexity achieved by the strategies implemented in the proposed algorithm

    Quality of Service Oriented Access Point Selection Framework for Large Wi-Fi Networks

    Get PDF
    This paper addresses the problem of Access Point (AP) selection in large Wi-Fi networks. Unlike current solutions that rely on Received Signal Strength (RSS) to determine the best AP that could serve a wireless user’s request, we propose a novel framework that considers the Quality of Service (QoS) requirements of the user’s data flow. The proposed framework relies on a function reflecting the suitability of a Wi-Fi AP to satisfy the QoS requirements of the data flow. The framework takes advantage of the flexibility and centralised nature of Software Defined Networking (SDN). A performance comparison of this algorithm developed through an SDN-based simulator shows significant achievements against other state of the art solutions in terms of provided QoS and improved wireless network capacity

    Belaidžio ryšio tinklų terpės prieigos valdymo tyrimas

    Get PDF
    Over the years, consumer requirements for Quality of Service (QoS) has been growing exponentially. Recently, the ratification process of newly IEEE 802.11ad amendment to IEEE 802.11 was finished. The IEEE 802.11ad is the newly con-sumer wireless communication approach, which will gain high spot on the 5G evolution. Major players in wireless market, such as Qualcomm already are inte-grating solutions from unlicensed band, like IEEE 802.11ac, IEEE 802.11ad into their architecture of LTE PRO (the next evolutionary step for 5G networking) (Qualcomm 2013; Parker et al. 2015). As the demand is growing both in enter-prise wireless networking and home consumer markets. Consumers started to no-tice the performance degradation due to overcrowded unlicensed bands. The un-licensed bands such as 2.4 GHz, 5 GHz are widely used for up-to-date IEEE 802.11n/ac technologies with upcoming IEEE 802.11ax. However, overusage of the available frequency leads to severe interference issue and consequences in to-tal system performance degradation, currently existing wireless medium access method can not sustain the increasing intereference and thus wireless needs a new methods of wireless medium access. The main focal point of this dissertation is to improve wireless performance in dense wireless networks. In dissertation both the conceptual and multi-band wireless medium access methods are considered both from theoretical point of view and experimental usage. The introduction chapter presents the investigated problem and it’s objects of research as well as importance of dissertation and it’s scientific novelty in the unlicensed wireless field. Chapter 1 revises used literature. Existing and up-to-date state-of-the-art so-lution are reviewed, evaluated and key point advantages and disadvantages are analyzed. Conclusions are drawn at the end of the chapter. Chapter 2 describes theoretical analysis of wireless medium access protocols and the new wireless medium access method. During analysis theoretical simula-tions are performed. Conclusions are drawn at the end of the chapter. Chapter 3 is focused on the experimental components evaluation for multi-band system, which would be in line with theoretical concept investigations. The experimental results, showed that components of multi-band system can gain sig-nificant performance increase when compared to the existing IEEE 802.11n/ac wireless systems. General conclusions are drawn after analysis of measurement results
    corecore