2,016 research outputs found

    Electronically-switched Directional Antennas for Low-power Wireless Networks: A Prototype-driven Evaluation

    Get PDF
    We study the benefits of electronically-switched directional antennas in low-power wireless networks. This antenna technology may improve energy efficiency by increasing the communication range and by alleviating contention in directions other than the destination, but in principle requires a dedicated network stack. Unlike most existing works, we start by characterizing a real-world antenna prototype, and apply this to an existing low-power wireless stack, which we adapt with minimal changes. Our results show that: i) the combination of a low-cost directional antenna and a conventional network stack already brings significant performance improvements, e.g., nearly halving the radio-on time per delivered packet; ii) the margin of improvement available to alternative clean-slate protocol designs is similarly large and concentrated in the control rather than the data plane; iii) by artificially modifying our antenna's link-layer model, we can point at further potential benefits opened by different antenna designs

    Car-Park Management using Wireless Sensor Networks

    Get PDF
    A complete wireless sensor network solution for car-park management is presented in this paper. The system architecture and design are first detailed, followed by a description of the current working implementation, which is based on our DSYS25z sensing nodes. Results of a series of real experimental tests regarding connectivity, sensing and network performance are then discussed. The analysis of link characteristics in the car park scenario shows unexpected reliability patterns which have a strong influence on MAC and routing protocol design. Two unexpected link reliability patterns are identified and documented. First, the presence of the objects (cars) being sensed can cause significant interference and degradation in communication performance. Second, link quality has a high temporal correlation but a low spatial correlation. From these observations we conclude that a) the construction and maintenance of a fixed topology is not useful and b) spatial rather than temporal message replicates can improve transport reliability

    Survey: energy efficient protocols using radio scheduling in wireless sensor network

    Get PDF
    An efficient energy management scheme is crucial factor for design and implementation of any sensor network. Almost all sensor networks are structured with numerous small sized, low cost sensor devices which are scattered over the large area. To improvise the network performance by high throughput with minimum energy consumption, an energy efficient radio scheduling MAC protocol is effective solution, since MAC layer has the capability to collaborate with distributed wireless networks. The present survey study provides relevant research work towards radio scheduling mechanism in the design of energy efficient wireless sensor networks (WSNs). The various radio scheduling protocols are exist in the literature, which has some limitations. Therefore, it is require developing a new energy efficient radio scheduling protocol to perform multi tasks with minimum energy consumption (e.g. data transmission). The most of research studies paying more attention towards to enhance the overall network lifetime with the aim of using energy efficient scheduling protocol. In that context, this survey study overviews the different categories of MAC based radio scheduling protocols and those protocols are measured by evaluating their data transmission capability, energy efficiency, and network performance. With the extensive analysis of existing works, many research challenges are stated. Also provides future directions for new WSN design at the end of this survey

    Portability, compatibility and reuse of MAC protocols across different IoT radio platforms

    Get PDF
    To cope with the diversity of Internet of Things (loT) requirements, a large number of Medium Access Control (MAC) protocols have been proposed in scientific literature, many of which are designed for specific application domains. However, for most of these MAC protocols, no multi-platform software implementation is available. In fact, the path from conceptual MAC protocol proposed in theoretical papers, towards an actual working implementation is rife with pitfalls. (i) A first problem is the timing bugs, frequently encountered in MAC implementations. (ii) Furthermore, once implemented, many MAC protocols are strongly optimized for specific hardware, thereby limiting the potential of software reuse or modifications. (iii) Finally, in real-life conditions, the performance of the MAC protocol varies strongly depending on the actual underlying radio chip. As a result, the same MAC protocol implementation acts differently per platform, resulting in unpredictable/asymmetrical behavior when multiple platforms are combined in the same network. This paper describes in detail the challenges related to multi-platform MAC development, and experimentally quantifies how the above issues impact the MAC protocol performance when running MAC protocols on multiple radio chips. Finally, an overall methodology is proposed to avoid the previously mentioned cross-platform compatibility issues. (C) 2018 Elsevier B.V. All rights reserved

    Slotted ALOHA Overlay on LoRaWAN: a Distributed Synchronization Approach

    Full text link
    LoRaWAN is one of the most promising standards for IoT applications. Nevertheless, the high density of end-devices expected for each gateway, the absence of an effective synchronization scheme between gateway and end-devices, challenge the scalability of these networks. In this article, we propose to regulate the communication of LoRaWAN networks using a Slotted-ALOHA (S-ALOHA) instead of the classic ALOHA approach used by LoRa. The implementation is an overlay on top of the standard LoRaWAN; thus no modification in pre-existing LoRaWAN firmware and libraries is necessary. Our method is based on a novel distributed synchronization service that is suitable for low-cost IoT end-nodes. S-ALOHA supported by our synchronization service significantly improves the performance of traditional LoRaWAN networks regarding packet loss rate and network throughput.Comment: 4 pages, 8 figure

    Congestion and medium access control in 6LoWPAN WSN

    Get PDF
    In computer networks, congestion is a condition in which one or more egressinterfaces are offered more packets than are forwarded at any given instant [1]. In wireless sensor networks, congestion can cause a number of problems including packet loss, lower throughput and poor energy efficiency. These problems can potentially result in a reduced deployment lifetime and underperforming applications. Moreover, idle radio listening is a major source of energy consumption therefore low-power wireless devices must keep their radio transceivers off to maximise their battery lifetime. In order to minimise energy consumption and thus maximise the lifetime of wireless sensor networks, the research community has made significant efforts towards power saving medium access control protocols with Radio Duty Cycling. However, careful study of previous work reveals that radio duty cycle schemes are often neglected during the design and evaluation of congestion control algorithms. This thesis argues that the presence (or lack) of radio duty cycle can drastically influence the performance of congestion control mechanisms. To investigate if previous findings regarding congestion control are still applicable in IPv6 over low power wireless personal area and duty cycling networks; some of the most commonly used congestion detection algorithms are evaluated through simulations. The research aims to develop duty cycle aware congestion control schemes for IPv6 over low power wireless personal area networks. The proposed schemes must be able to maximise the networks goodput, while minimising packet loss, energy consumption and packet delay. Two congestion control schemes, namely DCCC6 (Duty Cycle-Aware Congestion Control for 6LoWPAN Networks) and CADC (Congestion Aware Duty Cycle MAC) are proposed to realise this claim. DCCC6 performs congestion detection based on a dynamic buffer. When congestion occurs, parent nodes will inform the nodes contributing to congestion and rates will be readjusted based on a new rate adaptation scheme aiming for local fairness. The child notification procedure is decided by DCCC6 and will be different when the network is duty cycling. When the network is duty cycling the child notification will be made through unicast frames. On the contrary broadcast frames will be used for congestion notification when the network is not duty cycling. Simulation and test-bed experiments have shown that DCCC6 achieved higher goodput and lower packet loss than previous works. Moreover, simulations show that DCCC6 maintained low energy consumption, with average delay times while it achieved a high degree of fairness. CADC, uses a new mechanism for duty cycle adaptation that reacts quickly to changing traffic loads and patterns. CADC is the first dynamic duty cycle pro- tocol implemented in Contiki Operating system (OS) as well as one of the first schemes designed based on the arbitrary traffic characteristics of IPv6 wireless sensor networks. Furthermore, CADC is designed as a stand alone medium access control scheme and thus it can easily be transfered to any wireless sensor network architecture. Additionally, CADC does not require any time synchronisation algorithms to operate at the nodes and does not use any additional packets for the exchange of information between the nodes (For example no overhead). In this research, 10000 simulation experiments and 700 test-bed experiments have been conducted for the evaluation of CADC. These experiments demonstrate that CADC can successfully adapt its cycle based on traffic patterns in every traffic scenario. Moreover, CADC consistently achieved the lowest energy consumption, very low packet delay times and packet loss, while its goodput performance was better than other dynamic duty cycle protocols and similar to the highest goodput observed among static duty cycle configurations

    Smart-antenna techniques for energy-efficient wireless sensor networks used in bridge structural health monitoring

    Get PDF
    Abstract: It is well known that wireless sensor networks differ from other computing platforms in that 1- they typically require a minimal amount of computing power at the nodes; 2- it is often desirable for sensor nodes to have drastically low power consumption. The main benefit of the this work is a substantial network life before batteries need to be replaced or, alternatively, the capacity to function off of modest environmental energy sources (energy harvesting). In the context of Structural Health Monitoring (SHM), battery replacement is particularly problematic since nodes can be in difficult to access locations. Furthermore, any intervention on a bridge may disrupt normal bridge operation, e.g. traffic may need to be halted. In this regard, switchbeam smart antennas in combination with wireless sensor networks (WSNs) have shown great potential in reducing implementation and maintenance costs of SHM systems. The main goal of implementing switch-beam smart antennas in our application is to reduce power consumption, by focusing the radiated energy only where it is needed. SHM systems capture the dynamic vibration information of a bridge structure in real-time in order to assess the health of the structure and to predict failures. Current SHM systems are based on piezoelectric patch sensors. In addition, the collection of data from the plurality of sensors distributed over the span of the bridge is typically performed through an expensive and bulky set of shielded wires which routes the information to a data sink at one end of the structure. The installation, maintenance and operational costs of such systems are extremely high due to high power consumption and the need for periodic maintenance. Wireless sensor networks represent an attractive alternative, in terms of cost, ease of maintenance, and power consumption. However, network lifetime in terms of node battery life must be very long (ideally 5–10 years) given the cost and hassle of manual intervention. In this context, the focus of this project is to reduce the global power consumption of the SHM system by implementing switched-beam smart antennas jointly with an optimized MAC layer. In the first part of the thesis, a sensor network platform for bridge SHM incorporating switched-beam antennas is modelled and simulated. where the main consideration is the joint optimization of beamforming parameters, MAC layer, and energy consumption. The simulation model, built within the Omnet++ network simulation framework, incorporates the energy consumption profiles of actual selected components (microcontroller, radio interface chip). The energy consumption and packet delivery ratio (PDR) of the network with switched-beam antennas is compared with an equivalent network based on omnidirectional antennas. In the second part of the thesis, this system model is leveraged to examine two distinct but interrelated aspects: Gallium Arsenide (GaAs) based solar energy harvesting and switched-beam antenna strategies. The main consideration here is the joint optimization of solar energy harvesting and switchedbeam directional antennas, where an equivalent network based on omnidirectional antennas acts as a baseline reference for comparison purposes.Il est bien connu que les rĂ©seaux de capteurs sans fils diffĂšrent des autres plateformes informatiques Ă©tant donnĂ© 1- qu’ils requiĂšrent typiquement une puissance de calcul minimale aux noeuds du rĂ©seau ; 2- qu’il est souvent dĂ©sirable que les noeuds capteurs aient une consommation d’énergie dramatiquement faible. La principale retombĂ©e de ce travail rĂ©side en la durĂ©e de vie allongĂ©e du rĂ©seau avant que les piles ne doivent ĂȘtre remplacĂ©es ou, alternativement, la capacitĂ© de fonctionner indĂ©finiment Ă  partir de modestes sources d’énergie ambiente (glĂąnage d’énergie). Dans le contexte du contrĂŽle de la santĂ© structurale (CSS), le remplacement de piles est particuliĂšrement problĂ©matique puisque les noeuds peuvent se trouver en des endroits difficiles d’accĂšs. De plus, toute intervention sur un pont implique une perturbation de l’opĂ©ration normale de la structure, par exemple un arrĂȘt du traffic. Dans ce contexte, les antennes intelligentes Ă  commutation de faisceau en combinaison avec les rĂ©seaux de capteurs sans fils ont dĂ©montrĂ© un grand potentiel pour rĂ©duire les coĂ»ts de rĂ©alisation et d’entretien de systĂšmes de CSS. L’objectif principal de l’intĂ©gration d’antennes Ă  commutation de faisceau dans notre application rĂ©side dans la rĂ©duction de la consommation Ă©nergĂ©tique, rĂ©alisĂ©e en concentrant l’énergie radiĂ©e uniquement lĂ  oĂč elle est nĂ©cessaire. Les systĂšmes de CSS capturent l’information dynamique de vibration d’une structure de pont en temps rĂ©el de maniĂšre Ă  Ă©valuer la santĂ© de la structure et prĂ©dire les failles. Les systĂšmes courants de CSS sont basĂ©s sur des senseurs piĂ©zoĂ©lectriques planaires. De plus, la collecte de donnĂ©es Ă  partir de la pluralitĂ© de senseurs distribuĂ©s sur l’étendue du pont est typiquement effectuĂ©e par le biais d’un ensemble coĂ»teux et encombrant de cĂąbles blindĂ©s qui vĂ©hiculent l’information jusqu’à un point de collecte Ă  une extremitĂ© de la structure. L’installation, l’entretien, et les coĂ»ts opĂ©rationnels de tels systĂšmes sont extrĂȘmement Ă©levĂ©s Ă©tant donnĂ© la consommation de puissance Ă©levĂ©e et le besoin d’entretien rĂ©gulier. Les rĂ©seaux de capteurs sans fils reprĂ©sentent une alternative attrayante, en termes de coĂ»t, facilitĂ© d’entretien et consommation Ă©nergĂ©tique. Toutefois, la vie de rĂ©seau en termes de la durĂ©e de vie des piles doit ĂȘtre trĂšs longue (idĂ©alement de 5 Ă  10 ans) Ă©tant donnĂ© le coĂ»t et les problĂšmes liĂ©s Ă  l’intervention manuelle. Dans ce contexte, ce projet se concentre sur la rĂ©duction de la consommation de puissance globale d’un systĂšme de CSS en y intĂ©grant des antennes intelligentes Ă  commutation de faisceau conjointement avec une couche d’accĂšs au mĂ©dium (couche MAC) optimisĂ©e. Dans la premiĂšre partie de la thĂšse, une plateforme de rĂ©seau de capteurs sans fils pour le CSS d’un pont incorporant des antennes Ă  commutation de faisceaux est modĂ©lisĂ© et simulĂ©, avec pour considĂ©ration principale l’optimisation des paramĂštres de sĂ©lection de faisceau, de la couche MAC et de la consommation d’énergie. Le modĂšle de simulation, construit dans le logiciel de simulation de rĂ©seaux Omnet++, incorpore les profils de consommation d’énergie de composants rĂ©els sĂ©lectionnĂ©s (microcontrĂŽleur, puce d’interface radio). La consommation d’énergie et le taux de livraison de paquets du rĂ©seau avec antennes Ă  commutation de faisceau est comparĂ© avec un rĂ©seau Ă©quivalent basĂ© sur des antennes omnidirectionnelles. Dans la deuxiĂšme partie de la thĂšse, le modĂšle systĂšme proposĂ© est mis Ă  contribution pour examiner deux aspects distrincts mais interreliĂ©s : le glĂąnage d’énergie Ă  partir de cellules solaire Ă  base d’arsĂ©niure de Gallium (GaAs) et les stratĂ©gies liĂ©es aux antennes Ă  commutation de faisceau. La considĂ©ration principale ici est l’optimisation conjointe du glĂąnage d’énergie et des antennes Ă  commutation de faisceau, en ayant pour base de comparaison un rĂ©seau Ă©quivalent Ă  base d’antennes omnidirectionnelles

    Understanding Link Dynamics in Wireless Sensor Networks with Dynamically Steerable Directional Antennas

    Get PDF
    Abstract. By radiating the power in the direction of choice, electronicallyswitched directional (ESD) antennas can reduce network contention and avoid packet loss. There exists some ESD antennas for wireless sensor networks, but so far researchers have mainly evaluated their directionality. There are no studies regarding the link dynamics of ESD antennas, in particular not for indoor deployments and other scenarios where nodes are not necessarily in line of sight. Our long-term experiments confirm that previous findings that have demonstrated the dependence of angleof-arrival on channel frequency also hold for directional transmissions with ESD antennas. This is important for the design of protocols for wireless sensor networks with ESD antennas: the best antenna direction, i.e., the direction that leads to the highest packet reception rate and signal strength at the receiver, is not stable but varies over time and with the selected IEEE 802.15.4 channel. As this requires protocols to incorporate some form of adaptation, we present an intentionally simple and yet efficient mechanism for selecting the best antenna direction at run-time with an energy overhead below 2 % compared to standard omni-directional transmissions.
    • 

    corecore