4,296 research outputs found

    A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics

    Full text link
    [EN] In 1994, Matthews introduced the notion of partial metric and established a duality relationship between partial metrics and quasi-metrics defined on a set X. In this paper, we adapt such a relationship to the fuzzy context, in the sense of George and Veeramani, by establishing a duality relationship between fuzzy quasi-metrics and fuzzy partial metrics on a set X, defined using the residuum operator of a continuous t-norm *. Concretely, we provide a method to construct a fuzzy quasi-metric from a fuzzy partial one. Subsequently, we introduce the notion of fuzzy weighted quasi-metric and obtain a way to construct a fuzzy partial metric from a fuzzy weighted quasi-metric. Such constructions are restricted to the case in which the continuous t-norm * is Archimedean and we show that such a restriction cannot be deleted. Moreover, in both cases, the topology is preserved, i.e., the topology of the fuzzy quasi-metric obtained coincides with the topology of the fuzzy partial metric from which it is constructed and vice versa. Besides, different examples to illustrate the exposed theory are provided, which, in addition, show the consistence of our constructions comparing it with the classical duality relationship.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work is also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears) and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements No 779776 and No 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Miravet, D. (2020). A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics. Mathematics. 8(9):1-16. https://doi.org/10.3390/math809157511689MATTHEWS, S. G. (1994). Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol), 183-197. doi:10.1111/j.1749-6632.1994.tb44144.xGeorge, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Roldán-López-de-Hierro, A.-F., Karapınar, E., & Manro, S. (2014). Some new fixed point theorems in fuzzy metric spaces. Journal of Intelligent & Fuzzy Systems, 27(5), 2257-2264. doi:10.3233/ifs-141189Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gutiérrez García, J., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems, 330, 52-78. doi:10.1016/j.fss.2017.05.001Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Gregori, V., Miñana, J.-J., & Miravet, D. (2018). Fuzzy partial metric spaces. International Journal of General Systems, 48(3), 260-279. doi:10.1080/03081079.2018.1552687Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Romaguera, S., & Tirado, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics, 8(2), 273. doi:10.3390/math8020273Wu, X., & Chen, G. (2020). Answering an open question in fuzzy metric spaces. Fuzzy Sets and Systems, 390, 188-191. doi:10.1016/j.fss.2019.12.006Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2008). Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. Journal of Visual Communication and Image Representation, 19(1), 20-29. doi:10.1016/j.jvcir.2007.04.003Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842-1849. doi:10.1016/j.patrec.2010.01.008Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Morillas, S., Gregori, V., Peris-Fajarnés, G., & Latorre, P. (2005). A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging, 11(5-6), 417-428. doi:10.1016/j.rti.2005.06.007Gregori, V., & Romaguera, S. (2004). Fuzzy quasi-metric spaces. Applied General Topology, 5(1), 129. doi:10.4995/agt.2004.2001Park, J. H. (2004). Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22(5), 1039-1046. doi:10.1016/j.chaos.2004.02.051Rodrı́guez-López, J., & Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems, 147(2), 273-283. doi:10.1016/j.fss.2003.09.007Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313Sapena Piera, A. (2001). A contribution to the study of fuzzy metric spaces. Applied General Topology, 2(1), 63. doi:10.4995/agt.2001.3016Miñana, J.-J., & Valero, O. (2020). On Matthews’ Relationship Between Quasi-Metrics and Partial Metrics: An Aggregation Perspective. Results in Mathematics, 75(2). doi:10.1007/s00025-020-1173-xKarapınar, E., Erhan, İ. M., & Öztürk, A. (2013). Fixed point theorems on quasi-partial metric spaces. Mathematical and Computer Modelling, 57(9-10), 2442-2448. doi:10.1016/j.mcm.2012.06.036Künzi, H.-P. A., Pajoohesh, H., & Schellekens, M. P. (2006). Partial quasi-metrics. Theoretical Computer Science, 365(3), 237-246. doi:10.1016/j.tcs.2006.07.05

    A Minimal Length from the Cutoff Modes in Asymptotically Safe Quantum Gravity

    Full text link
    Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be "fuzzy" in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.Comment: 26 pages, 1 figur

    DLCQ and Plane Wave Matrix Big Bang Models

    Full text link
    We study the generalisations of the Craps-Sethi-Verlinde matrix big bang model to curved, in particular plane wave, space-times, beginning with a careful discussion of the DLCQ procedure. Singular homogeneous plane waves are ideal toy-models of realistic space-time singularities since they have been shown to arise universally as their Penrose limits, and we emphasise the role played by the symmetries of these plane waves in implementing the flat space Seiberg-Sen DLCQ prescription for these curved backgrounds. We then analyse various aspects of the resulting matrix string Yang-Mills theories, such as the relation between strong coupling space-time singularities and world-sheet tachyonic mass terms. In order to have concrete examples at hand, in an appendix we determine and analyse the IIA singular homogeneous plane wave - null dilaton backgrounds.Comment: 29 pages, v2: reference added + minor cosmetic correction

    Generally Covariant Actions for Multiple D-branes

    Full text link
    We develop a formalism that allows us to write actions for multiple D-branes with manifest general covariance. While the matrix coordinates of the D-branes have a complicated transformation law under coordinate transformations, we find that these may be promoted to (redundant) matrix fields on the transverse space with a simple covariant transformation law. Using these fields, we define a covariant distribution function (a matrix generalization of the delta function which describes the location of a single brane). The final actions take the form of an integral over the curved space of a scalar single-trace action built from the covariant matrix fields, tensors involving the metric, and the covariant distribution function. For diagonal matrices, the integral localizes to the positions of the individual branes, giving N copies of the single-brane action.Comment: 34 pages, LaTeX. v2: comments and refs adde

    Noncommutative Electromagnetism As A Large N Gauge Theory

    Full text link
    We map noncommutative (NC) U(1) gauge theory on R^d_C X R^{2n}_{NC} to U(N -> \infty) Yang-Mills theory on R^d_C, where R^d_C is a d-dimensional commutative spacetime while R^{2n}_{NC} is a 2n-dimensional NC space. The resulting U(N) Yang-Mills theory on R^d_C is equivalent to that obtained by the dimensional reduction of (d+2n)-dimensional U(N) Yang-Mills theory onto R^d_C. We show that the gauge-Higgs system (A_\mu,\Phi^a) in the U(N -> \infty) Yang-Mills theory on R^d_C leads to an emergent geometry in the (d+2n)-dimensional spacetime whose metric was determined by Ward a long time ago. In particular, the 10-dimensional gravity for d=4 and n=3 corresponds to the emergent geometry arising from the 4-dimensional N=4 vector multiplet in the AdS/CFT duality. We further elucidate the emergent gravity by showing that the gauge-Higgs system (A_\mu,\Phi^a) in half-BPS configurations describes self-dual Einstein gravity.Comment: 25 pages; More clarifications, to appear in Eur. Phys. J.
    corecore