1,632 research outputs found

    Application of advanced on-board processing concepts to future satellite communications systems: Bibliography

    Get PDF
    Abstracts are presented of a literature survey of reports concerning the application of signal processing concepts. Approximately 300 references are included

    Channel parameter tuning in a hybrid Wi-Fi-Dynamic Spectrum Access Wireless Mesh Network

    Get PDF
    This work addresses Channel Assignment in a multi-radio multi-channel (MRMC) Wireless Mesh Network (WMN) using both Wi-Fi and Dynamic Spectrum Access (DSA) spectrum bands and standards. This scenario poses new challenges because nodes are spread out geographically so may have differing allowed channels and experience different levels of external interference in different channels. A solution must meet two conflicting requirements simultaneously: 1) avoid or minimise interference within the network and from external interference sources, and 2) maintain connectivity within the network. These two requirements must be met while staying within the link constraints and the radio interface constraints, such as only assigning as many channels to a node as it has radios. This work's original contribution to the field is a unified framework for channel optimisation and assignment in a WMN that uses both DSA and traditional Wi-Fi channels for interconnectivity. This contribution is realised by providing and analysing the performance of near-optimal Channel Assignment (CA) solutions using metaheuristic algorithms for the MRMC WMNs using DSA bands. We have created a simulation framework for evaluating the algorithms. The performance of Simulated Annealing, Genetic Algorithm, Differential Evolution, and Particle Swarm Optimisation algorithms have been analysed and compared for the CA optimisation problem. We introduce a novel algorithm, used alongside the metaheuristic optimisation algorithms, to generate feasible candidate CA solutions. Unlike previous studies, this sensing and CA work takes into account the requirement to use a Geolocation Spectrum Database (GLSD) to get the allowed channels, in addition to using spectrum sensing to identify and estimate the cumulative severity of both internal and external interference sources. External interference may be caused by other secondary users (SUs) in the vicinity or by primary transmitters of the DSA band whose emissions leak into adjacent channels, next-toadjacent, or even into further channels. We use signal-to-interference-plus-noise ratio (SINR) as the optimisation objective. This incorporates any possible source or type of interference and makes our method agnostic to the protocol or technology of the interfering devices while ensuring that the received signal level is high enough for connectivity to be maintained on as many links as possible. To support our assertion that SINR is a reasonable criterion on which to base the optimisation, we have carried out extensive outdoor measurements in both line-of-sight and wooded conditions in the television white space (TVWS) DSA band and the 5 GHz Wi-Fi band. These measurements show that SINR is useful as a performance measure, especially when the interference experienced on a link is high. Our statistical analysis shows that SINR effectively differentiates the performance of different channels and that SINR is well correlated with throughput and is thus a good predictor of end-user experience, despite varying conditions. We also identify and analyse the idle times created by Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) contention-based Medium Access Control (MAC) operations and propose the use of these idle times for spectrum sensing to measure the SINR on possible channels. This means we can perform spectrum sensing with zero spectrum sensing delay experienced by the end user. Unlike previous work, this spectrum sensing is transparent and can be performed without causing any disruption to the normal data transmission of the network. We conduct Markov chain analysis to find the expected length of time of a sensing window. We also derive an efficient minimum variance unbiased estimator of the interference plus noise and show how the SINR can be found using this estimate. Our estimation is more granular, accurate, and appropriate to the problem of Secondary User (SU)-SU coexistence than the binary hypothesis testing methods that are most common in the literature. Furthermore, we construct confidence intervals based on the probability density function derived for the observations. This leads to finding and showing the relationships between the number of sampling windows and sampling time, the interference power, and the achievable confidence interval width. While our results coincide with (and thus are confirmed by) some key previous recommendations, ours are more precise, granular, and accurate and allow for application to a wider range of operating conditions. Finally, we present alterations to the IEEE 802.11k protocol to enable the reporting of spectrum sensing results to the fusion or gateway node and algorithms for distributing the Channel Assignment once computed. We analyse the convergence rate of the proposed procedures and find that high network availability can be maintained despite the temporary loss of connectivity caused by the channel switching procedure. This dissertation consolidates the different activities required to improve the channel parameter settings of a multi-radio multi-channel DSA-WMN. The work facilitates the extension of Internet connectivity to the unconnected or unreliably connected in rural or peri-urban areas in a more cost-effective way, enabling more meaningful and affordable access technologies. It also empowers smaller players to construct better community networks for sharing local content. This technology can have knock-on effects of improved socio-economic conditions for the communities that use it

    Simultaneous Transmission Opportunities for LTE-LAA Co existing with WiFi in Unlicensed Spectrum from Exploiting Spatial Domain

    Get PDF
    In this thesis, we first give an intensive review on the background of LTE-LAA technology, the research status of LTE-LAA and WiFi co-existence mechanisms and 3GPP Rel. 13 standardization on LTELAA. The existing co-existence designs focus on the time-domain, frequency-domain and power-domain to achieve fairness between two systems. Simultaneous transmissions are avoided to reduce collision probability. However, by exploiting the spatial domain, we discover the possibility of simultaneous LTE-LAA/WiFi transmission opportunities as long as the interference received at the WiFi receiver is well managed. We first show the feasibility of such simultaneous transmission opportunities considering AP/UE location diversity and various coverage overlap situations between LTE-LAA small cell and WiFi AP. Then, by utilizing multi-antenna beamforming capability, we propose a more practical co-existence scheme combing DoA estimation and null steering technologies. As the lack of direct communication link between LTE-LAA and WiFi systems, we also give our design of information exchange that requires minimal modifications on current WiFi standards and with little to none extra overhead. From the discussions and simulation results, we prove the existence of such simultaneous transmission opportunities that do not bring extra impact on WiFi networks. The channel occupancy time of LTE-LAA can be greatly improved. However, problems and challenges are also identified that require future investigations

    Enabling 5G Technologies

    Get PDF
    The increasing demand for connectivity and broadband wireless access is leading to the fifth generation (5G) of cellular networks. The overall scope of 5G is greater in client width and diversity than in previous generations, requiring substantial changes to network topologies and air interfaces. This divergence from existing network designs is prompting a massive growth in research, with the U.S. government alone investing $400 million in advanced wireless technologies. 5G is projected to enable the connectivity of 20 billion devices by 2020, and dominate such areas as vehicular networking and the Internet of Things. However, many challenges exist to enable large scale deployment and general adoption of the cellular industries. In this dissertation, we propose three new additions to the literature to further the progression 5G development. These additions approach 5G from top down and bottom up perspectives considering interference modeling and physical layer prototyping. Heterogeneous deployments are considered from a purely analytical perspective, modeling co-channel interference between and among both macrocell and femtocell tiers. We further enhance these models with parameterized directional antennas and integrate them into a novel mixed point process study of the network. At the air interface, we examine Software-Defined Radio (SDR) development of physical link level simulations. First, we introduce a new algorithm acceleration framework for MATLAB, enabling real-time and concurrent applications. Extensible beyond SDR alone, this dataflow framework can provide application speedup for stream-based or data dependent processing. Furthermore, using SDRs we develop a localization testbed for dense deployments of 5G smallcells. Providing real-time tracking of targets using foundational direction of arrival estimation techniques, including a new OFDM based correlation implementation

    Customer premise service study for 30/20 GHz satellite system

    Get PDF
    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Self organization in 3GPP long term evolution networks

    Get PDF
    Mobiele en breedbandige internettoegang is realiteit. De internetgeneratie vindt het immers normaal om overal breedbandige internettoegang te hebben. Vandaag zijn er al 5,9 miljard mobiele abonnees ( 87% van de wereldbevolking) en 20% daarvan hebben toegang tot een mobiele breedbandige internetverbinding. Dit wordt aangeboden door 3G (derde generatie) technologieën zoals HSPA (High Speed Packet Access) en 4G (vierde generatie) technologieën zoals LTE (Long Term Evolution). De vraag naar hoogkwalitatieve diensten stelt de mobiele netwerkoperatoren en de verkopers van telecommunicatieapparatuur voor nieuwe uitdagingen: zij moeten nieuwe oplossingen vinden om hun diensten steeds sneller en met een hogere kwaliteit aan te bieden. De nieuwe LTE-standaard brengt niet alleen hogere pieksnelheden en kleinere vertragingen. Het heeft daarnaast ook nieuwe functionaliteiten in petto die zeer aantrekkelijk zijn voor de mobiele netwerkoperator: de integratie van zelfregelende functies die kunnen ingezet worden bij de planning van het netwerk, het uitrollen van een netwerk en het controleren van allerhande netwerkmechanismen (o.a. handover, spreiding van de belasting over de cellen). Dit proefschrift optimaliseert enkele van deze zelfregelende functies waardoor de optimalisatie van een mobiel netwerk snel en automatisch kan gebeuren. Hierdoor verwacht men lagere kosten voor de mobiele operator en een hogere kwaliteit van de aangeboden diensten

    Busy burst technology applied to OFDMA–TDD systems

    Get PDF
    The most significant bottleneck in wireless communication systems is an ever-increasing disproportion between the bandwidth demand and the available spectrum. A major challenge in the field of wireless communications is to maximise the spatial reuse of resources whilst avoiding detrimental co-channel interference (CCI). To this end, frequency planning and centralised coordination approaches are widely used in wireless networks. However, the networks for the next generation of wireless communications are often envisioned to be decentralised, randomly distributed in space, hierarchical and support heterogeneous traffic and service types. Fixed frequency allocation would not cater for the heterogeneous demands and centralised resource allocation would be cumbersome and require a lot of signalling. Decentralised radio resource allocation based on locally available information is considered the key. In this context, the busy burst (BB) signalling concept is identified as a potential mechanism for decentralised interference management in future generation networks. Interference aware allocation of time-frequency slots (chunks) is accomplished by letting receivers transmit a BB in a time-multiplexed mini-slot, upon successful reception of data. Exploiting channel reciprocity of the time division duplex (TDD) mode, the transmitters avoid reusing the chunks where the received BB power is above a pre-determined threshold so as to limit the CCI caused towards the reserved chunks to a threshold value. In this thesis, the performance of BB signalling mechanism in orthogonal frequency division multiple access - time division duplexing (OFDMA-TDD) systems is evaluated by means of system level simulations in networks operating in ad hoc and cellular scenarios. Comparisons are made against the state-of-the-art centralised CCI avoidance and mitigation methods, viz. frequency planning, fractional frequency reuse, and antenna array with switched grid of beams, as well as decentralised methods such as the carrier sense multiple access method that attempt to avoid CCI by avoiding transmission on chunks deemed busy. The results demonstrate that with an appropriate choice of threshold parameter, BB-based techniques outperform all of the above state-of-the-art methods. Moreover, it is demonstrated that by adjusting the BB-specific threshold parameter, the system throughput can be traded off for improving throughput for links with worse channel condition, both in the ad hoc and cellular scenario. Moreover, by utilising a variable BB power that allows a receiver to signal the maximum CCI it can tolerate, it is shown that a more favourable trade-off between total system throughput and link throughput can be made. Furthermore, by performing link adaptation, it is demonstrated that the spatial reuse and the energy efficiency can be traded off by adjusting the threshold parameter. Although the BB signalling mechanism is shown to be effective in avoiding detrimental CCI, it cannot mitigate CCI by itself. On the other hand, multiple antenna techniques such as adaptive beamforming or switched beam approaches allow CCI to be mitigated but suffer from hidden node problems. The final contribution of this thesis is that by combining the BB signalling mechanism with multiple antenna techniques, it is demonstrated that the hybrid approach enhances spatial reusability of resources whilst avoiding detrimental CCI. In summary, this thesis has demonstrated that BB provides a flexible radio resource mechanism that is suitable for future generation networks
    corecore