171 research outputs found

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Reconstruction Error and Principal Component Based Anomaly Detection in Hyperspectral imagery

    Get PDF
    The rapid expansion of remote sensing and information collection capabilities demands methods to highlight interesting or anomalous patterns within an overabundance of data. This research addresses this issue for hyperspectral imagery (HSI). Two new reconstruction based HSI anomaly detectors are outlined: one using principal component analysis (PCA), and the other a form of non-linear PCA called logistic principal component analysis. Two very effective, yet relatively simple, modifications to the autonomous global anomaly detector are also presented, improving algorithm performance and enabling receiver operating characteristic analysis. A novel technique for HSI anomaly detection dubbed multiple PCA is introduced and found to perform as well or better than existing detectors on HYDICE data while using only linear deterministic methods. Finally, a response surface based optimization is performed on algorithm parameters such as to affect consistent desired algorithm performance

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Efficient multitemporal change detection techniques for hyperspectral images on GPU

    Get PDF
    Hyperspectral images contain hundreds of reflectance values for each pixel. Detecting regions of change in multiple hyperspectral images of the same scene taken at different times is of widespread interest for a large number of applications. For remote sensing, in particular, a very common application is land-cover analysis. The high dimensionality of the hyperspectral images makes the development of computationally efficient processing schemes critical. This thesis focuses on the development of change detection approaches at object level, based on supervised direct multidate classification, for hyperspectral datasets. The proposed approaches improve the accuracy of current state of the art algorithms and their projection onto Graphics Processing Units (GPUs) allows their execution in real-time scenarios

    Ordem supervisionada baseada em valores fuzzy para morfologia matemática multivalorada  

    Get PDF
    Orientador: Marcos Eduardo Ribeiro do Valle MesquitaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação CientíficaResumo: Morfologia Matemática foi concebida como uma ferramenta para a análise e processamento de imagens binárias e foi subsequentemente generalizada para o uso em imagens em tons de cinza e imagens multivaloradas. Reticulados completos, que são conjuntos parcialmente ordenados em que todo subconjunto tem extremos bem definidos, servem como a base matemática para uma definição geral de morfologia matemática. Em contraste a imagens em tons de cinza, imagens multivaloradas não possuem uma ordem não-ambígua. Essa dissertação trata das chamadas ordens reduzidas para imagens multivaloradas. Ordens reduzidas são definidas por meio de uma relação binária que ordena os elementos de acordo com uma função h do conjunto de valores em um reticulado completo. Ordens reduzidas podem ser classificadas em ordens não-supervisionadas e ordens supervisionadas. Numa ordem supervisionada, o função de ordenação h depende de conjuntos de treinamento de valores de foreground e de background. Nesta dissertação, estudamos ordens supervisionadas da literatura. Também propomos uma ordem supervisionada baseada em valores fuzzy. Valores fuzzy generalizam cores fuzzy - conjuntos fuzzy que modelam o modo que humanos percebem as cores - para imagens multivaloradas. Em particular, revemos como construir o mapa de ordenação baseado em conjuntos fuzzy para o foreground e para o background. Também introduzimos uma função de pertinência baseada numa estrutura neuro-fuzzy e generalizamos a função de pertinência baseada no diagrama de Voronoi. Por fim, as ordens supervisionadas são avaliadas num experimento de segmentação de imagens hiperespectrais baseado num perfil morfológico modificadoAbstract: Mathematical morphology has been conceived initially as a tool for the analysis and processing of binary images and has been later generalized to grayscale and multivalued images. Complete lattices, which are partially ordered sets in whose every subset has well defined extrema, serve as the mathematical background for a general definition of mathematical morphology. In contrast to gray-scale images, however, there is no unambiguous ordering for multivalued images. This dissertation addresses the so-called reduced orderings for multi-valued images. Reduced orderings are defined by means of a binary relation which ranks elements according to a mapping h from the value set into a complete lattice. Reduced orderings can be classified as unsupervised and supervised ordering. In a supervised ordering, the mapping h depends on training sets of foreground and background values. In this dissertation, we study some relevant supervised orderings from the literature. We also propose a supervised ordering based on fuzzy values. Fuzzy values are a generalization of fuzzy colors - fuzzy sets that model how humans perceive colors - to multivalued images other than color images. In particular, we review how to construct the fuzzy ordering mapping based on fuzzy sets that model the foreground and the background. Also, we introduce a membership function based on a neuro-fuzzy framework and generalize the membership function based on Voronoi diagrams. The supervised orderings are evaluated in an experiment of hyperspectral image segmentation based on a modified morphological profileMestradoMatematica AplicadaMestre em Matemática Aplicada131635/2018-2CNP

    Comparison of Classical Computer Vision vs. Convolutional Neural Networks for Weed Mapping in Aerial Images

    Get PDF
    In this paper, we present a comparison between convolutional neural networks and classicalcomputer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth, for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical model
    • …
    corecore