1,926 research outputs found

    Machine learning in Magnetic Resonance Imaging: Image reconstruction.

    Get PDF
    Magnetic Resonance Imaging (MRI) plays a vital role in diagnosis, management and monitoring of many diseases. However, it is an inherently slow imaging technique. Over the last 20 years, parallel imaging, temporal encoding and compressed sensing have enabled substantial speed-ups in the acquisition of MRI data, by accurately recovering missing lines of k-space data. However, clinical uptake of vastly accelerated acquisitions has been limited, in particular in compressed sensing, due to the time-consuming nature of the reconstructions and unnatural looking images. Following the success of machine learning in a wide range of imaging tasks, there has been a recent explosion in the use of machine learning in the field of MRI image reconstruction. A wide range of approaches have been proposed, which can be applied in k-space and/or image-space. Promising results have been demonstrated from a range of methods, enabling natural looking images and rapid computation. In this review article we summarize the current machine learning approaches used in MRI reconstruction, discuss their drawbacks, clinical applications, and current trends

    Magnetic Resonance Parameter Mapping using Self-supervised Deep Learning with Model Reinforcement

    Full text link
    This paper proposes a novel self-supervised learning method, RELAX-MORE, for quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll a model-based qMRI reconstruction into a deep learning framework, enabling the generation of highly accurate and robust MR parameter maps at imaging acceleration. Unlike conventional deep learning methods requiring a large amount of training data, RELAX-MORE is a subject-specific method that can be trained on single-subject data through self-supervised learning, making it accessible and practically applicable to many qMRI studies. Using the quantitative T1T_1 mapping as an example at different brain, knee and phantom experiments, the proposed method demonstrates excellent performance in reconstructing MR parameters, correcting imaging artifacts, removing noises, and recovering image features at imperfect imaging conditions. Compared with other state-of-the-art conventional and deep learning methods, RELAX-MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping. This work demonstrates the feasibility of a new self-supervised learning method for rapid MR parameter mapping, with great potential to enhance the clinical translation of qMRI

    3D single breath-hold MR methodology for measuring cardiac parametric mapping at 3T

    Get PDF
    Mención Internacional en el título de doctorOne of the foremost and challenging subfields of MRI is cardiac magnetic resonance imaging (CMR). CMR is becoming an indispensable tool in cardiovascular medicine by acquiring data about anatomy and function simultaneously. For instance, it allows the non-invasive characterization of myocardial tissues via parametric mapping techniques. These mapping techniques provide a spatial visualization of quantitative changes in the myocardial parameters. Inspired by the need to develop novel high-quality parametric sequences for 3T, this thesis's primary goal is to introduce an accurate and efficient 3D single breath-hold MR methodology for measuring cardiac parametric mapping at 3T. This thesis is divided into two main parts: i) research and development of a new 3D T1 saturation recovery mapping technique (3D SACORA), together with a feasibility study regarding the possibility of adding a T2 mapping feature to 3D SACORA concepts, and ii) research and implementation of a deep learning-based post-processing method to improve the T1 maps obtained with 3D SACORA. In the first part of the thesis, 3D SACORA was developed as a new 3D T1 mapping sequence to speed up T1 mapping acquisition of the whole heart. The proposed sequence was validated in phantoms against the gold standard technique IR-SE and in-vivo against the reference sequence 3D SASHA. The 3D SACORA pulse sequence design was focused on acquiring the entire left ventricle in a single breath-hold while achieving good quality T1 mapping and stability over a wide range of heart rates (HRs). The precision and accuracy of 3D SACORA were assessed in phantom experiments. Reference T1 values were obtained using IR-SE. In order to further validate 3D SACORA T1 estimation accuracy and precision, T1 values were also estimated using an in-house version of 3D SASHA. For in-vivo validation, seven large healthy pigs were scanned with 3D SACORA and 3D SASHA. In all pigs, images were acquired before and after administration of MR contrast agent. The phantom results showed good agreement and no significant bias between methods. In the in-vivo experiments, all T1-weighted images showed good contrast and quality, and the T1 maps correctly represented the information contained in the T1-weighted images. Septal T1s and coefficients of variation did not considerably differ between the two sequences, confirming good accuracy and precision. 3D SACORA images showed good contrast, homogeneity and were comparable to corresponding 3D SASHA images, despite the shorter acquisition time (15s vs. 188s, for a heart rate of 60 bpm). In conclusion, the proposed 3D SACORA successfully acquired a whole-heart 3D T1 map in a single breath-hold at 3T, estimating T1 values in agreement with those obtained with the IR-SE and 3D SASHA sequences. Following the successful validation of 3D SACORA, a feasibility study was performed to assess the potential of modifying the acquisition scheme of 3D SACORA in order to obtain T1 and T2 maps simultaneously in a single breath-hold. This 3D T1/T2 sequence was named 3D dual saturation-recovery compressed SENSE rapid acquisition (3D dual-SACORA). A phantom of eight tubes was built to validate the proposed sequence. The phantom was scanned with 3D dual-SACORA with a simulated heart rate of 60 bpm. Reference T1 and T2 values were estimated using IR-SE and GraSE sequences, respectively. An in-vivo study was performed with a healthy volunteer to evaluate the parametric maps' image quality obtained with the 3D dual-SACORA sequence. T1 and T2 maps of the phantom were successfully obtained with the 3D dual-SACORA sequence. The results show that the proposed sequence achieved good precision and accuracy for most values. A volunteer was successfully scanned with the proposed sequence (acquisition duration of approximately 20s) in a single breath-hold. The saturation time images and the parametric maps obtained with the 3D dual-SACORA sequence showed good contrast and homogeneity. The septal T1 and T2 values are in good agreement with reference sequences and published work. In conclusion, this feasibility study's findings open the door to the possibility of using 3D SACORA concepts to develop a successful 3D T1/T2 sequence. In the second part of the thesis, a deep learning-based super-resolution model was implemented to improve the image quality of the T1 maps of 3D SACORA, and a comprehensive study of the performance of the model in different MR image datasets and sequences was performed. After careful consideration, the selected convolutional neural network to improve the image quality of the T1 maps was the Residual Dense Network (RDN). This network has shown outstanding performance against state-of-the-art methods on benchmark datasets; however, it has not been validated on MR datasets. In this way, the RDN model was initially validated on cardiac and brain benchmark datasets. After this validation, the model was validated on a self-acquired cardiac dataset and on improving T1 maps. The RDN model improved the images successfully for the two benchmark datasets, achieving better performance with the brain dataset than with the cardiac dataset. This result was expected as the brain images have more well-defined edges than the cardiac images, making the resolution enhancement more evident. On the self-acquired cardiac dataset, the model also obtained an enhanced performance on image quality assessment metrics and improved visual assessment, particularly on well-defined edges. Regarding the T1 mapping sequences, the model improved the image quality of the saturation time images and the T1 maps. The model was able to enhance the T1 maps analytically and visually. Analytically, the model did not considerably modify the T1 values while improving the standard deviation in both myocardium and blood. Visually, the model improved the T1 maps by removing noise and motion artifacts without losing resolution on the edges. In conclusion, the RDN model was validated on three different MR datasets and used to improve the image quality of the T1 maps obtained with 3D SACORA and 3D SASHA. In summary, a 3D single breath-hold MR methodology was introduced, including a ready to-go 3D single breath-hold T1 mapping sequence for 3T (3D SACORA), together with the ideas for a new 3D T1/T2 mapping sequence (3D dual-SACORA); and a deep learning-based post-processing implementation capable of improving the image quality of 3D SACORA T1 maps.This thesis has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement N722427.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Carlos Alberola López.- Secretario: María Jesús Ledesma Carbayo.- Vocal: Nathan Mewto

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    RED-PSM: Regularization by Denoising of Partially Separable Models for Dynamic Imaging

    Full text link
    Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. In this work, we propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are partially separable models, which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent Regularization by Denoising (RED), which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and a computationally efficient and scalable optimization scheme with variable splitting and ADMM. Theoretical analysis proves the convergence of our objective to a value corresponding to a stationary point satisfying the first-order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method known as TD-DIP. Although the main focus is on dynamic tomography, we also show the performance advantages of RED-PSM in a cardiac dynamic MRI setting

    Challenges in imaging and predictive modeling of rhizosphere processes

    Get PDF
    Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes
    • …
    corecore