1,137 research outputs found

    Meta-heuristic based Construction Supply Chain Modelling and Optimization

    Get PDF
    Driven by the severe competition within the construction industry, the necessity of improving and optimizing the performance of construction supply chain has been aroused. This thesis proposes three problems with regard to the construction supply chain optimization from three perspectives, namely, deterministic single objective optimization, stochastic optimization and multi-objective optimization respectively. Mathematical models for each problem are constructed accordingly and meta-heuristic algorithms are developed and applied for resolving these three problems

    Dynamic Scheduling for Maintenance Tasks Allocation supported by Genetic Algorithms

    Get PDF
    Since the first factories were created, man has always tried to maximize its production and, consequently, his profits. However, the market demands have changed and nowadays is not so easy to get the maximum yield of it. The production lines are becoming more flexible and dynamic and the amount of information going through the factory is growing more and more. This leads to a scenario where errors in the production scheduling may occur often. Several approaches have been used over the time to plan and schedule the shop-floor’s production. However, some of them do not consider some factors present in real environments, such as the fact that the machines are not available all the time and need maintenance sometimes. This increases the complexity of the system and makes it harder to allocate the tasks competently. So, more dynamic approaches should be used to explore the large search spaces more efficiently. In this work is proposed an architecture and respective implementation to get a schedule including both production and maintenance tasks, which are often ignored on the related works. It considers the maintenance shifts available. The proposed architecture was implemented using genetic algorithms, which already proved to be good solving combinatorial problems such as the Job-Shop Scheduling problem. The architecture considers the precedence order between the tasks of a same product and the maintenance shifts available on the factory. The architecture was tested on a simulated environment to check the algorithm behavior. However, it was used a real data set of production tasks and working stations

    A Multi-Objective Variable Neighborhood Search Algorithm for Precast Production Scheduling

    Get PDF
    In real life, precast production schedulers face the challenges of creating a reasonable schedule to satisfy multiple conflicting objectives. Practical constraints and objectives encountered in the precast production scheduling problem (PPSP) were addressed, with the goal to minimize makespan and total earliness and tardiness penalties. A multi-objective variable neighborhood search (MOVNS) algorithm was proposed and the performance was tested on 11 problem instances. Ten of these were generated using precast concrete production information taken from the literature. One real industrial problem from a precast concrete company was considered as a case study. Extensive experiments were conducted, and the spread and distance metrics were used to evaluate the quality of the non-dominated solutions set. Statistical analysis demonstrated that the result was statistically convincing. Computational results showed that the proposed MOVNS algorithm was significantly better when compared to the other nine algorithms. Therefore, the proposed MOVNS algorithm was a very competitive method for the considered PPSP

    A game theory model based on Gale-Shapley for dual-resource constrained (DRC) flexible job shop scheduling

    Get PDF
    Most job shops in practice are constrained by both machine and labor availability. Worker assignment in these so-called Dual Resource Constrained (DRC) job shops is typically solved in the literature via the use of meta-heuristics, i.e. “when” and “where” rules, or heuristic assignment rules. While the former does not necessarily lead to optimal results, the latter suffers from high computational time and complexity, especially when there is a large number of workstations. This paper uses game theory to propose a new worker assignment rule for DRC job shops. The Gale-Shapley model (also known as the stable marriage problem) forms a ‘couple’ made up of a worker and machine following a periodic review strategy. Simulation is used to evaluate and compare the proposed model to “when” and “where” rules previously proposed in the literature. Simulation experiments under different conditions demonstrate that the Gale-Shapley model provides better results for worker assignments in complex DRC systems, particularly when the workers have different efficiency levels. The implications of the findings for research and practice are outlined

    Continuous Process Improvement Implementation Framework Using Multi-Objective Genetic Algorithms and Discrete Event Simulation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose Continuous process improvement is a hard problem, especially in high variety/low volume environments due to the complex interrelationships between processes. The purpose of this paper is to address the process improvement issues by simultaneously investigating the job sequencing and buffer size optimization problems. Design/methodology/approach This paper proposes a continuous process improvement implementation framework using a modified genetic algorithm (GA) and discrete event simulation to achieve multi-objective optimization. The proposed combinatorial optimization module combines the problem of job sequencing and buffer size optimization under a generic process improvement framework, where lead time and total inventory holding cost are used as two combinatorial optimization objectives. The proposed approach uses the discrete event simulation to mimic the manufacturing environment, the constraints imposed by the real environment and the different levels of variability associated with the resources. Findings Compared to existing evolutionary algorithm-based methods, the proposed framework considers the interrelationship between succeeding and preceding processes and the variability induced by both job sequence and buffer size problems on each other. A computational analysis shows significant improvement by applying the proposed framework. Originality/value Significant body of work exists in the area of continuous process improvement, discrete event simulation and GAs, a little work has been found where GAs and discrete event simulation are used together to implement continuous process improvement as an iterative approach. Also, a modified GA simultaneously addresses the job sequencing and buffer size optimization problems by considering the interrelationships and the effect of variability due to both on each other

    A Memetic Algorithm with Reinforcement Learning for Sociotechnical Production Scheduling

    Get PDF
    The following interdisciplinary article presents a memetic algorithm with applying deep reinforcement learning (DRL) for solving practically oriented dual resource constrained flexible job shop scheduling problems (DRC-FJSSP). From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material (BOM) manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration. In recent years, there has been extensive research on metaheuristics and DRL techniques but focused on simple scheduling environments. However, there are few approaches combining metaheuristics and DRL to generate schedules more reliably and efficiently. In this paper, we first formulate a DRC-FJSSP to map complex industry requirements beyond traditional job shop models. Then we propose a scheduling framework integrating a discrete event simulation (DES) for schedule evaluation, considering parallel computing and multicriteria optimization. Here, a memetic algorithm is enriched with DRL to improve sequencing and assignment decisions. Through numerical experiments with real-world production data, we confirm that the framework generates feasible schedules efficiently and reliably for a balanced optimization of makespan (MS) and total tardiness (TT). Utilizing DRL instead of random metaheuristic operations leads to better results in fewer algorithm iterations and outperforms traditional approaches in such complex environments.Comment: This article has been accepted by IEEE Access on June 30, 202
    • 

    corecore