11,121 research outputs found

    Low-resource synchronous coincidence processor for positron emission tomography

    Get PDF
    We developed a new FPGA-based method for coincidence detection in positronemissiontomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs

    Development of a time-to-digital converter ASIC for the upgrade of the ATLAS Monitored Drift Tube detector

    Full text link
    The upgrade of the ATLAS muon spectrometer for high-luminosity LHC requires new trigger and readout electronics for the various elements of the detector. We present the design of a time-to-digital converter (TDC) ASIC prototype for the ATLAS Monitored Drift Tube (MDT) detector. The chip was fabricated in a GlobalFoundries 130 nm CMOS technology. Studies indicate that its timing and power consumption characteristics meet the design specifications, with a timing bin variation of 40 ps for all 48 channels with a power consumption of about 6.5 mW per channel.Comment: 9 pages, 12 figure

    The STAR MAPS-based PiXeL detector

    Get PDF
    The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Custom built pixel sensors, their readout electronics and the detector mechanical structure are described in detail. Selected detector design aspects and production steps are presented. The detector operations during the three years of data taking (2014-2016) and the overall performance exceeding the design specifications are discussed in the conclusive sections of this paper

    A Low-Power and High-Speed Frequency Multiplier for DLL-Based Clock Generator

    Get PDF
    A low-power and high-speed frequency multiplier for a delay-locked loop-based clock generator is proposed to generate a multiplied clock with different range of frequencies. The modified edge combiner consumes low power and achieves a high-speed operation. The proposed frequency multiplier overcomes a deterministic jitter problem by reducing the delay difference between positive- and negative-edge generation paths. The proposed frequency multiplier is implemented in a 0.13-µm CMOS process technology achieved power consumption to a frequency ratio of 2.9 µW/MHz, and has the multiplication ratios of 16, and an output range of 100 MHz–3.3 GHz

    Development of high speed integrated circuit for very high resolution timing measurements

    Get PDF
    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy
    • …
    corecore