123,173 research outputs found

    Dual representations for general multiple stopping problems

    Get PDF
    In this paper, we study the dual representation for generalized multiple stopping problems, hence the pricing problem of general multiple exercise options. We derive a dual representation which allows for cashflows which are subject to volume constraints modeled by integer valued adapted processes and refraction periods modeled by stopping times. As such, this extends the works by Schoenmakers (2010), Bender (2011a), Bender (2011b), Aleksandrov and Hambly (2010), and Meinshausen and Hambly (2004) on multiple exercise options, which either take into consideration a refraction period or volume constraints, but not both simultaneously. We also allow more flexible cashflow structures than the additive structure in the above references. For example some exponential utility problems are covered by our setting. We supplement the theoretical results with an explicit Monte Carlo algorithm for constructing confidence intervals for the price of multiple exercise options and exemplify it by a numerical study on the pricing of a swing option in an electricity market.Comment: This is an updated version of WIAS preprint 1665, 23 November 201

    Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes

    Full text link
    Fast pricing of American-style options has been a difficult problem since it was first introduced to financial markets in 1970s, especially when the underlying stocks' prices follow some jump-diffusion processes. In this paper, we propose a new algorithm to generate tight upper bounds on the Bermudan option price without nested simulation, under the jump-diffusion setting. By exploiting the martingale representation theorem for jump processes on the dual martingale, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal-dual algorithm, therefore significantly improves the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our proposed algorithm

    From Black-Scholes to Online Learning: Dynamic Hedging under Adversarial Environments

    Full text link
    We consider a non-stochastic online learning approach to price financial options by modeling the market dynamic as a repeated game between the nature (adversary) and the investor. We demonstrate that such framework yields analogous structure as the Black-Scholes model, the widely popular option pricing model in stochastic finance, for both European and American options with convex payoffs. In the case of non-convex options, we construct approximate pricing algorithms, and demonstrate that their efficiency can be analyzed through the introduction of an artificial probability measure, in parallel to the so-called risk-neutral measure in the finance literature, even though our framework is completely adversarial. Continuous-time convergence results and extensions to incorporate price jumps are also presented

    Low Power Dynamic Scheduling for Computing Systems

    Full text link
    This paper considers energy-aware control for a computing system with two states: "active" and "idle." In the active state, the controller chooses to perform a single task using one of multiple task processing modes. The controller then saves energy by choosing an amount of time for the system to be idle. These decisions affect processing time, energy expenditure, and an abstract attribute vector that can be used to model other criteria of interest (such as processing quality or distortion). The goal is to optimize time average system performance. Applications of this model include a smart phone that makes energy-efficient computation and transmission decisions, a computer that processes tasks subject to rate, quality, and power constraints, and a smart grid energy manager that allocates resources in reaction to a time varying energy price. The solution methodology of this paper uses the theory of optimization for renewal systems developed in our previous work. This paper is written in tutorial form and develops the main concepts of the theory using several detailed examples. It also highlights the relationship between online dynamic optimization and linear fractional programming. Finally, it provides exercises to help the reader learn the main concepts and apply them to their own optimizations. This paper is an arxiv technical report, and is a preliminary version of material that will appear as a book chapter in an upcoming book on green communications and networking.Comment: 26 pages, 10 figures, single spac

    Robust One Period Option Modelling

    Get PDF
    AMS classifications: 90C15; 90C20; 90C90; 49M29;return on investment;option pricing models;optimization;portfolio investment

    Indifference Pricing and Hedging in a Multiple-Priors Model with Trading Constraints

    Get PDF
    This paper considers utility indifference valuation of derivatives under model uncertainty and trading constraints, where the utility is formulated as an additive stochastic differential utility of both intertemporal consumption and terminal wealth, and the uncertain prospects are ranked according to a multiple-priors model of Chen and Epstein (2002). The price is determined by two optimal stochastic control problems (mixed with optimal stopping time in the case of American option) of forward-backward stochastic differential equations. By means of backward stochastic differential equation and partial differential equation methods, we show that both bid and ask prices are closely related to the Black-Scholes risk-neutral price with modified dividend rates. The two prices will actually coincide with each other if there is no trading constraint or the model uncertainty disappears. Finally, two applications to European option and American option are discussed.Comment: 28 pages in Science China Mathematics, 201

    Principal Costs: A New Theory for Corporate Law and Governance

    Get PDF
    corecore