1,252 research outputs found

    In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion

    Full text link
    [ES] La actual crisis climática ha instado a la comunidad investigadora y a los fabricantes a brindar soluciones para hacer que el sector del transporte sea más sostenible. De entre las diversas tecnologías propuestas, la combustión a baja temperatura ha sido objeto de una extensa investigación. La combustión premezclada dual-fuel es uno de los conceptos que abordan el compromiso de NOx-hollín en motores de encendido por compresión manteniendo alta eficiencia térmica. Esta combustión hace uso de dos combustibles con diferentes reactividades para mejorar la controlabilidad de este modo de combustión en un amplio rango de funcionamiento. De manera similar a todos los modos de combustión premezclados, esta combustión es sensible a las condiciones de operación y suele estar sujeta a variabilidad cíclica con gradientes de presión significativos. En consecuencia, se requieren estrategias de control avanzadas para garantizar un funcionamiento seguro y preciso del motor. El control en bucle cerrado es una herramienta eficaz para abordar los desafíos que plantea la combustión premezclada dual-fuel. En este tipo de control, para mantener el funcionamiento deseado, las acciones de control se adaptan y corrigen a partir de una retroalimentación con las señales de salida del motor. Esta tesis presenta estrategias de control basadas en la medición de la señal de presión en el cilindro, aplicadas a motores de combustión premezclada dual-fuel. En ella se resuelven diversos aspectos del funcionamiento del motor mediante el diseño de controladores dedicados, haciéndose especial énfasis en analizar e implementar estas soluciones a los diferentes niveles de estratificación de mezcla considerados en estos motores (es decir, totalmente, altamente y parcialmente premezclada). Inicialmente, se diseñan estrategias de control basadas en el procesamiento de la señal de presión en el cilindro y se seleccionan acciones proporcionales-integrales para asegurar el rendimiento deseado del motor sin exceder las limitaciones mecánicas del motor. También se evalúa la técnica extremum seeking para realizar una supervisión de una combustión eficiente y la reducción de emisiones de NOx. Luego se analiza la resonancia de la presión en el cilindro y se implementa un controlador similar a aquel usado para el control de knock para garantizar el funcionamiento seguro del motor. Finalmente, se utilizan modelos matemáticos para diseñar un modelo orientado a control y un observador que tiene como objetivo combinar las señales medidas en el motor para mejorar las capacidades de predicción y diagnóstico en dicha configuración de motor. Los resultados de este trabajo destacan la importancia de considerar el control en bucle cerrado para abordar las limitaciones encontradas en los modos de combustión premezclada. En particular, el uso de la medición de presión en el cilindro muestra la relevancia y el potencial de esta señal para desarrollar estrategias de control complejas y precisas.[CA] L'actual crisi climàtica ha instat a la comunitat investigadora i als fabricants a brindar solucions per a fer que el sector del transport siga més sostenible. D'entre les diverses tecnologies proposades, la combustió a baixa temperatura ha sigut objecte d'una extensa investigació. La combustió premesclada dual-fuel és un dels conceptes que aborden el compromís de NOx-sutge en motors d'encesa per compressió mantenint alta eficiència tèrmica. Aquesta combustió fa ús de dos combustibles amb diferents reactivitats per a millorar la controlabilitat d'aquest tipus de combustió en un ampli rang de funcionament. De manera similar a tots els tipus de combustió premesclada, aquesta combustió és sensible a les condicions d'operació i sol estar subjecta a variabilitat cíclica amb gradients de pressió significatius. En conseqüència, es requereixen estratègies de control avançades per a garantir un funcionament segur i precís del motor. El control en bucle tancat és una eina eficaç per a abordar els desafiaments que planteja la combustió premesclada dual-fuel. En aquesta mena de control, per a mantindre el funcionament desitjat, les accions de control s'adapten i corregeixen a partir d'una retroalimentació amb els senyals d'eixida del motor. Aquesta tesi presenta estratègies de control basades en el mesurament del senyal de pressió en el cilindre, aplicades a motors de combustió premesclada dual-fuel. En ella es resolen diversos aspectes del funcionament del motor mitjançant el disseny de controladors dedicats, fent-se especial èmfasi a analitzar i implementar aquestes solucions als diferents nivells d'estratificació de mescla considerats en aquests motors (és a dir, totalment, altament i parcialment premesclada). Inicialment, es dissenyen estratègies de control basades en el processament del senyal de pressió en el cilindre i se seleccionen accions proporcionals-integrals per a assegurar el rendiment desitjat del motor sense excedir les limitacions mecàniques del motor. També s'avalua la tècnica extremum seeking per a realitzar una supervisió d'una combustió eficient i la reducció d'emissions de NOx. Després s'analitza la ressonància de la pressió en el cilindre i s'implementa un controlador similar a aquell usat per al control de knock per a garantir el funcionament segur del motor. Finalment, s'utilitzen models matemàtics per a dissenyar un model orientat a control i un observador que té com a objectiu combinar els senyals mesurats en el motor per a millorar les capacitats de predicció i diagnòstic en aquesta configuració de motor. Els resultats d'aquest treball destaquen la importància de considerar el control en bucle tancat per a abordar les limitacions trobades en la combustió premesclada. En particular, l'ús del mesurament de pressió en el cilindre mostra la rellevància i el potencial d'aquest senyal per a desenvolupar estratègies de control complexes i precises.[EN] The current climate crisis has urged the research community and manufacturers to provide solutions to make the transportation sector cleaner. Among the various technologies proposed, low temperature combustion has undergone extensive investigation. Premixed dual-fuel combustion is one of the concepts addressing the NOx-soot trade-off in compression ignited engines, while maintaining high thermal efficiency. This combustion makes use of two fuels with different reactivities in order to improve the controllability of this combustion mode over a wide range of operation. Similarly to all premixed combustion modes, this combustion is nevertheless sensitive to the operating conditions and traditionally exhibits cycle-to-cycle variability with significant pressure gradients. Consequently, advanced control strategies to ensure a safe and accurate operation of the engine are required. Feedback control is a powerful approach to address the challenges raised by the premixed dual-fuel combustion. By measuring the output signals from the engine, strategies can be developed to adapt and correct the control actions to maintain the desired operation. This thesis presents control strategies, based on the in-cylinder pressure signal measurement, applied to premixed dual-fuel combustion engines. Various objectives were addressed by designing dedicated controllers, where a special emphasis was made towards analyzing and implementing these solutions to the different levels of mixture stratification considered in these engines (i.e., fully, highly and partially premixed). At first, feedback control strategies based on the in-cylinder pressure signal processing were designed. Proportional-integral actions were selected to ensure the desired engine performance without exceeding the mechanical constraints of the engine. Extremum seeking was evaluated to track efficient combustion phasing and NOx emissions reduction. The in-cylinder pressure resonance was then analyzed and a knock-like controller was implemented to ensure safe operation of the engine. Finally, mathematical models were used to design a control-oriented model and a state observer that aimed to leverage the signals measured in the engine to improve the prediction and diagnostic capabilities in such engine configuration. The results from this work highlighted the importance of considering feedback control to address the limitations encountered in premixed combustion modes. Particularly, the use of the in-cylinder pressure measurement showed the relevance and potential of this signal to develop complex and accurate control strategies.This thesis was financially supported by the Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020 through grant ACIF/2018/141.Barbier, ARS. (2022). In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18327

    Green Energy Technology

    Get PDF
    This book, entitled “The Green Energy Technology”, covers technologies, products, equipment, and devices, as well as energy services, based on software and data protected by patents and/or trademarks. The recent trends underline the principles of a circular economy such as sustainable product design, extending the product’s lifecycle, reusability, and recycling. These are highly related to climate change and environmental impact, and limited natural resources require scientific research and novel technical solutions. This book will serve as a collection of the latest scientific and technological approaches to “green”—i.e., environmentally friendly and sustainable—technologies. While the focus is on energy and bioenergy, it also covers "green" solutions in all aspects of industrial engineering. Green Energy Technology addresses researchers, advanced students, technical consultants and decision-makers in industries and politics. This book is a comprehensive overview and in-depth technical research paper addressing recent progress in Green Energy Technology. We hope that readers will enjoy reading this book

    Manual control models of industrial management

    Get PDF
    The industrial engineer is often required to design and implement control systems and organization for manufacturing and service facilities, to optimize quality, delivery, and yield, and minimize cost. Despite progress in computer science most such systems still employ human operators and managers as real-time control elements. Manual control theory should therefore be applicable to at least some aspects of industrial system design and operations. Formulation of adequate model structures is an essential prerequisite to progress in this area; since real-world production systems invariably include multilevel and multiloop control, and are implemented by timeshared human effort. A modular structure incorporating certain new types of functional element, has been developed. This forms the basis for analysis of an industrial process operation. In this case it appears that managerial controllers operate in a discrete predictive mode based on fast time modelling, with sampling interval related to plant dynamics. Successive aggregation causes reduced response bandwidth and hence increased sampling interval as a function of level

    Alcohol fuels for spark-ignition engines: performance, efficiency, and emission effects at mid to high blend rates for ternary mixtures

    Get PDF
    This paper follows on from an earlier publication on high-blend-rate binary gasoline-alcohol mixtures and reports results for some equivalent ternary fuels from several investigation streams. In the present work, new findings are presented for high-load operation in a dedicated boosted multi-cylinder engine test facility, for operation in modified production engines, for knock performance in a single-cylinder test engine, and for exhaust particulate emissions at part load using both the prototype multi-cylinder engine and a separate single-cylinder engine. The wide variety of test engines employed have several differences, including their fuel delivery strategies. This range of engine specifications is considered beneficial with regard to the “drop-in fuel” conjecture, since the results presented here bear out the contention, already established in the literature, that when specified according to the known ternary blending rules, such fuels fundamentally perform identically to their binary equivalents in terms of engine performance, and outperform standard gasolines in terms of efficiency. However, in the present work, some differences in particulate emissions performance in direct-injection engines have been found at light load for the tested fuels, with a slight increase in particulate number observed with higher methanol contents than lower. A hypothesis is developed to explain this result but in general it was found that these fuels do not significantly affect PN emissions from such engines. As a result, this investigation supplies further evidence that renewable fuels can be introduced simply into the existing vehicle fleet, with the inherent backwards compatibility that this brings too

    NETWORKED MICROGRID OPTIMIZATION AND ENERGY MANAGEMENT

    Get PDF
    Military vehicles possess attributes consistent with a microgrid, containing electrical energy generation, storage, government furnished equipment (GFE), and the ability to share these capabilities via interconnection. Many military vehicles have significant energy storage capacity to satisfy silent watch requirements, making them particularly well-suited to share their energy storage capabilities with stationary microgrids for more efficient energy management. Further, the energy generation capacity and the fuel consumption rate of the vehicles are comparable to standard diesel generators, for certain scenarios, the use of the vehicles could result in more efficient operation. Energy management of a microgrid is an open area of research especially in generation constrained scenarios where shedding of low-priority loads may be required. Typical metrics used to assess the effectiveness of an energy management strategy or policy include fuel consumption, electrical storage energy requirements, or the net exergy destruction. When considering a military outpost consisting of a stationary microgrid and a set of vehicles, the metrics used for managing the network become more complex. For example, the metrics used to manage a vehicle’s onboard equipment while on patrol may include fuel consumption, the acoustic signature, and the heat signature. Now consider that the vehicles are parked at an outpost and participating in vehicle-to-grid power-sharing and control. The metrics used to manage the grid assets may now include fuel consumption, the electrical storage’s state of charge, frequency regulation, load prioritization, and load dispatching. The focus of this work is to develop energy management and control strategies that allow a set of diverse assets to be controlled, yielding optimal operation. The provided policies result in both short-term and long-term optimal control of the electrical generation assets. The contributions of this work were: (1) development of a methodology to generate a time-varying electrical load based on (1) a U.S. Army-relevant event schedule and (2) a set of meteorological conditions, resulting in a scenario rich environment suitable for modeling and control of hybrid AC/DC tactical military microgrids, (2) the development of a multi-tiered hierarchical control architecture, suitable for development of both short and long term optimal energy management strategies for hybrid electric microgrids, and (3) the development of blending strategies capable of blending a diverse set of heterogeneous assets with multiple competing objective functions. This work could be extended to include a more diverse set of energy generation assets, found within future energy networks

    MODELLING AND CONTROL OF COMBUSTION PHASING OF AN RCCI ENGINE

    Get PDF
    Reactivity controlled compression ignition (RCCI) is a novel combustion strategy introduced to achieve near-zero NOx and soot emissions while maintaining diesel-like efficiencies. Meanwhile, precise control of combustion phasing is a key in realization of high fuel conversion efficiency as well as meeting stringent emission standards. Model-based control of RCCI combustion phasing is a great tool for real-time control during transient operation of the engine, which requires a computationally efficient combustion model that encompasses factors such as, injection timings, fuel blend composition and reactivity. In this thesis, physics-based models are developed to predict the combustion metrics of an RCCI engine. A mean value control-oriented model (COM) of RCCI is then developed by combining the auto-ignition model, the burn duration model, and a Wiebe function to predict combustion phasing. Development of a model-based controller requires a dynamic model which can predict engine operation, i.e., estimation of combustion metrics, on a cycle-to-cycle basis. Hence, the mean-value model is extended to encompass the full-cycle engine operation by including the expansion and exhaust strokes. In addition, the dynamics stemming from the thermal coupling between cycles are accounted for, that results in a dynamic RCCI control-oriented model capable of predicting the transient operation of the engine. This model is then simplified and linearized in order to develop a linear observer-based feedback controller to control the combustion phasing using the premixed ratio (the ratio of the PFI fuel to the total fuel injected) of the gasoline/diesel fuel. The designed controller depicts an accurate tracking performance of the desired combustion phasing and successfully rejects external disturbances in engine operating conditions

    Thermo-kinetic multi-zone modelling of low temperature combustion engines

    Get PDF
    Many researchers believe multi-zone (MZ), chemical kinetics–based models are proven, essential toolchains for development of low-temperature combustion (LTC) engines. However, such models are specific to the research groups that developed them and are not widely available on a commercial nor open-source basis. Consequently, their governing assumptions vary, resulting in differences in autonomy, accuracy and simulation speed, all of which affect their applicability. Knowledge of the models´ individual characteristics is scattered over the research groups´ publications, making it extremely difficult to see the bigger picture. This combination of disparities and dispersed information hinders the engine research community that wants to harness the capability of multi-zone modelling. This work aims to overcome these hurdles. It is a comprehensive review of over 120 works directly related to MZ modelling of LTC extended with an insight to primary sources covering individual submodels. It covers 16 distinctive modelling approaches, three different combustion concepts and over 60 different fuel/kinetic mechanism combination. Over 38 identified applications ranging from fundamental-level studies to control development. The work aims to provide sufficient detail of individual model design choices to facilitate creation of improved, more open multi-zone toolchains and inspire new applications. It also provides a high-level vision of how multi-zone models can evolve. The review identifies a state-of-the-art multi-zone model as an onion-skin model with 10–15 zones; phenomenological heat and mass transfer submodels with predictive in-cylinder turbulence; and semi-detailed reaction kinetics encapsulating 53-199 species. Together with submodels for heat loss, fuel injection and gas exchange, this modelling approach predicts in-cylinder pressure within cycle-to-cycle variation for a handful of combustion concepts, from homogeneous/premixed charge to reactivity-controlled compression ignition (HCCI, PCCI, RCCI). Single-core simulation time is around 30 minutes for implementations focused on accuracy: there are direct time-reduction strategies for control applications. Major tasks include a fast and predictive means to determine in-cylinder fuel stratification, and extending applicability and predictivity by coupling with commercial one-dimensional engine-modelling toolchains. There is also significant room for simulation speed-up by incorporating techniques such as tabulated chemistry and employing new solving algorithms that reduce cost of jacobian construction.© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    corecore