3,260 research outputs found

    Formally based semi-automatic implementation of an open security protocol

    Get PDF
    International audienceThis paper presents an experiment in which an implementation of the client side of the SSH Transport Layer Protocol (SSH-TLP) was semi-automatically derived according to a model-driven development paradigm that leverages formal methods in order to obtain high correctness assurance. The approach used in the experiment starts with the formalization of the protocol at an abstract level. This model is then formally proved to fulfill the desired secrecy and authentication properties by using the ProVerif prover. Finally, a sound Java implementation is semi-automatically derived from the verified model using an enhanced version of the Spi2Java framework. The resulting implementation correctly interoperates with third party servers, and its execution time is comparable with that of other manually developed Java SSH-TLP client implementations. This case study demonstrates that the adopted model-driven approach is viable even for a real security protocol, despite the complexity of the models needed in order to achieve an interoperable implementation

    A secure archive for Voice-over-IP conversations

    Full text link
    An efficient archive securing the integrity of VoIP-based two-party conversations is presented. The solution is based on chains of hashes and continuously chained electronic signatures. Security is concentrated in a single, efficient component, allowing for a detailed analysis.Comment: 9 pages, 2 figures. (C) ACM, (2006). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of VSW06, June, 2006, Berlin, German

    FLAIM: A Multi-level Anonymization Framework for Computer and Network Logs

    Full text link
    FLAIM (Framework for Log Anonymization and Information Management) addresses two important needs not well addressed by current log anonymizers. First, it is extremely modular and not tied to the specific log being anonymized. Second, it supports multi-level anonymization, allowing system administrators to make fine-grained trade-offs between information loss and privacy/security concerns. In this paper, we examine anonymization solutions to date and note the above limitations in each. We further describe how FLAIM addresses these problems, and we describe FLAIM's architecture and features in detail.Comment: 16 pages, 4 figures, in submission to USENIX Lis
    corecore