3,486 research outputs found

    A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks

    Get PDF
    BACKGROUND: Receptors and scaffold proteins possess a number of distinct domains and bind multiple partners. A common problem in modeling signaling systems arises from a combinatorial explosion of different states generated by feasible molecular species. The number of possible species grows exponentially with the number of different docking sites and can easily reach several millions. Models accounting for this combinatorial variety become impractical for many applications. RESULTS: Our results show that under realistic assumptions on domain interactions, the dynamics of signaling pathways can be exactly described by reduced, hierarchically structured models. The method presented here provides a rigorous way to model a large class of signaling networks using macro-states (macroscopic quantities such as the levels of occupancy of the binding domains) instead of micro-states (concentrations of individual species). The method is described using generic multidomain proteins and is applied to the molecule LAT. CONCLUSION: The presented method is a systematic and powerful tool to derive reduced model structures describing the dynamics of multiprotein complex formation accurately

    Domain-Oriented Reduction of Rule-Based Network Models

    Get PDF
    The coupling of membrane-bound receptors to transcriptional regulators and other effector functions is mediated by multi-domain proteins that form complex assemblies. The modularity of protein interactions lends itself to a rule-based description, in which species and reactions are generated by rules that encode the necessary context for an interaction to occur, but also can produce a combinatorial explosion in the number of chemical species that make up the signaling network. We have shown previously that exact network reduction can be achieved using hierarchical control relationships between sites/domains on proteins to dissect multi-domain proteins into sets of non-interacting sites, allowing the replacement of each “full” (progenitor) protein with a set of derived auxiliary (offspring) proteins. The description of a network in terms of auxiliary proteins that have fewer sites than progenitor proteins often greatly reduces network size. We describe here a method for automating domain-oriented model reduction and its implementation as a module in the BioNetGen modeling package. It takes as input a standard BioNetGen model and automatically performs the following steps: 1) detecting the hierarchical control relationships between sites; 2) building up the auxiliary proteins; 3) generating a raw reduced model; and 4) cleaning up the raw model to provide the correct mass balance for each chemical species in the reduced network. We tested the performance of this module on models representing portions of growth factor receptor and immunoreceptor-mediated signaling networks, and confirmed its ability to reduce the model size and simulation cost by at least one or two orders of magnitude. Limitations of the current algorithm include the inability to reduce models based on implicit site dependencies or heterodimerization, and loss of accuracy when dynamics are computed stochastically

    Trading the micro-world of combinatorial complexity for the macro-world of protein interaction domains

    Get PDF
    Membrane receptors and proteins involved in signal transduction display numerous binding domains and operate as molecular scaffolds generating a variety of parallel reactions and protein complexes. The resulting combinatorial explosion of the number of feasible chemical species and, hence, different states of a network greatly impedes mechanistic modeling of signaling systems. Here we present novel general principles and identify kinetic requirements that allow us to replace a mechanistic picture of all possible micro-states and transitions by a macro-description of states of separate binding sites of network proteins. This domain-oriented approach dramatically reduces computational models of cellular signaling networks by dissecting mechanistic trajectories into the dynamics of macro- and meso-variables. We specify the conditions when the temporal dynamics of micro-states can be exactly or approximately expressed in terms of the product of the relative concentrations of separate domains. We prove that our macro-modeling approach equally applies to signaling systems with low population levels, analyzed by stochastic rather than deterministic equations. Thus, our results greatly facilitate quantitative analysis and computational modeling of multi-protein signaling networks

    Model simplification of signal transduction pathway networks via a hybrid inference strategy

    Get PDF
    A full-scale mathematical model of cellular networks normally involves a large number of variables and parameters. How to effectively develop manageable and reliable models is crucial for effective computation, analysis and design of such systems. The aim of model simplification is to eliminate parts of a model that are unimportant for the properties of interest. In this work, a model reduction strategy via hybrid inference is proposed for signal pathway networks. It integrates multiple techniques including conservation analysis, local sensitivity analysis, principal component analysis and flux analysis to identify the reactions and variables that can be considered to be eliminated from the full-scale model. Using an I·B-NF-·B signalling pathway model as an example, simulation analysis demonstrates that the simplified model quantitatively predicts the dynamic behaviours of the network

    Exact model reduction of combinatorial reaction networks

    Get PDF
    Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models

    ALC: automated reduction of rule-based models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity. Layer-based modeling allows for the modeling of systems not accessible previously.</p> <p>Results</p> <p>ALC (Automated Layer Construction) is a computer program that highly simplifies the building of reduced modular models, according to the layer-based approach. The model is defined using a simple but powerful rule-based syntax that supports the concepts of modularity and macrostates. ALC performs consistency checks on the model definition and provides the model output in different formats (C MEX, MATLAB, <it>Mathematica </it>and SBML) as ready-to-run simulation files. ALC also provides additional documentation files that simplify the publication or presentation of the models. The tool can be used offline or via a form on the ALC website.</p> <p>Conclusion</p> <p>ALC allows for a simple rule-based generation of layer-based reduced models. The model files are given in different formats as ready-to-run simulation files.</p
    corecore