218,604 research outputs found

    Mistakes in medical ontologies: Where do they come from and how can they be detected?

    Get PDF
    We present the details of a methodology for quality assurance in large medical terminologies and describe three algorithms that can help terminology developers and users to identify potential mistakes. The methodology is based in part on linguistic criteria and in part on logical and ontological principles governing sound classifications. We conclude by outlining the results of applying the methodology in the form of a taxonomy different types of errors and potential errors detected in SNOMED-CT

    Introducing realist ontology for the representation of adverse events

    Get PDF
    The goal of the REMINE project is to build a high performance prediction, detection and monitoring platform for managing Risks against Patient Safety (RAPS). Part of the work involves developing in ontology enabling computer-assisted RAPS decision support on the basis of the disease history of a patient as documented in a hospital information system. A requirement of the ontology is to contain a representation for what is commonly referred to by the term 'adverse event', one challenge being that distinct authoritative sources define this term in different and context-dependent ways. The presence of some common ground in all definitions is, however, obvious. Using the analytical principles underlying Basic Formal Ontology and Referent Tracking, both developed in the tradition of philosophical realism, we propose a formal representation of this common ground which combines a reference ontology consisting exclusively of representations of universals and an application ontology which consists representations of defined classes. We argue that what in most cases is referred to by means of the term 'adverse event' - when used generically - is a defined class rather than a universal. In favour of the conception of adverse events as forming a defined class are the arguments that (1) there is no definition for 'adverse event' that carves out a collection of particulars which constitutes the extension of a universal, and (2) the majority of definitions require adverse events to be (variably) the result of some observation, assessment or (absence of) expectation, thereby giving these entities a nominal or epistemological flavour

    Building a semantically annotated corpus of clinical texts

    Get PDF
    In this paper, we describe the construction of a semantically annotated corpus of clinical texts for use in the development and evaluation of systems for automatically extracting clinically significant information from the textual component of patient records. The paper details the sampling of textual material from a collection of 20,000 cancer patient records, the development of a semantic annotation scheme, the annotation methodology, the distribution of annotations in the final corpus, and the use of the corpus for development of an adaptive information extraction system. The resulting corpus is the most richly semantically annotated resource for clinical text processing built to date, whose value has been demonstrated through its use in developing an effective information extraction system. The detailed presentation of our corpus construction and annotation methodology will be of value to others seeking to build high-quality semantically annotated corpora in biomedical domains

    Who Cares about Axiomatization? Representation, Invariance, and Formal Ontologies

    Get PDF
    The philosophy of science of Patrick Suppes is centered on two important notions that are part of the title of his recent book (Suppes 2002): Representation and Invariance. Representation is important because when we embrace a theory we implicitly choose a way to represent the phenomenon we are studying. Invariance is important because, since invariants are the only things that are constant in a theory, in a way they give the “objective” meaning of that theory. Every scientific theory gives a representation of a class of structures and studies the invariant properties holding in that class of structures. In Suppes’ view, the best way to define this class of structures is via axiomatization. This is because a class of structures is given by a definition, and this same definition establishes which are the properties that a single structure must possess in order to belong to the class. These properties correspond to the axioms of a logical theory. In Suppes’ view, the best way to characterize a scientific structure is by giving a representation theorem for its models and singling out the invariants in the structure. Thus, we can say that the philosophy of science of Patrick Suppes consists in the application of the axiomatic method to scientific disciplines. What I want to argue in this paper is that this application of the axiomatic method is also at the basis of a new approach that is being increasingly applied to the study of computer science and information systems, namely the approach of formal ontologies. The main task of an ontology is that of making explicit the conceptual structure underlying a certain domain. By “making explicit the conceptual structure” we mean singling out the most basic entities populating the domain and writing axioms expressing the main properties of these primitives and the relations holding among them. So, in both cases, the axiomatization is the main tool used to characterize the object of inquiry, being this object scientific theories (in Suppes’ approach), or information systems (for formal ontologies). In the following section I will present the view of Patrick Suppes on the philosophy of science and the axiomatic method, in section 3 I will survey the theoretical issues underlying the work that is being done in formal ontologies and in section 4 I will draw a comparison of these two approaches and explore similarities and differences between them

    Generating Preview Tables for Entity Graphs

    Full text link
    Users are tapping into massive, heterogeneous entity graphs for many applications. It is challenging to select entity graphs for a particular need, given abundant datasets from many sources and the oftentimes scarce information for them. We propose methods to produce preview tables for compact presentation of important entity types and relationships in entity graphs. The preview tables assist users in attaining a quick and rough preview of the data. They can be shown in a limited display space for a user to browse and explore, before she decides to spend time and resources to fetch and investigate the complete dataset. We formulate several optimization problems that look for previews with the highest scores according to intuitive goodness measures, under various constraints on preview size and distance between preview tables. The optimization problem under distance constraint is NP-hard. We design a dynamic-programming algorithm and an Apriori-style algorithm for finding optimal previews. Results from experiments, comparison with related work and user studies demonstrated the scoring measures' accuracy and the discovery algorithms' efficiency.Comment: This is the camera-ready version of a SIGMOD16 paper. There might be tiny differences in layout, spacing and linebreaking, compared with the version in the SIGMOD16 proceedings, since we must submit TeX files and use arXiv to compile the file

    Finding Support Documents with a Logistic Regression Approach

    Get PDF
    Entity retrieval finds the relevant results for a user’s information needs at a finer unit called “entity”. To retrieve such entity, people usually first locate a small set of support documents which contain answer entities, and then further detect the answer entities in this set. In the literature, people view the support documents as relevant documents, and their findings as a conventional document retrieval problem. In this paper, we will state that finding support documents and that of relevant documents, although sounds similar, have important differences. Further, we propose a logistic regression approach to find support documents. Our experiment results show that the logistic regression method performs significantly better than a baseline system that treat the support document finding as a conventional document retrieval problem
    • …
    corecore