84 research outputs found

    Numerical study on performance of perforated breakwater for green water

    Full text link
    In this work, the influence of the geometry of lightweight perforated breakwaters on their performance against green water impact loads is investigated systematically through a series of numerical simulations. For this purpose, a fully Lagrangian meshfree particle-based method is adopted to model transient and impulsive hydrodynamic phenomenon with free surface and complex geometry. The green water flow is represented by a dam-break problem; the breakwater is modeled as a perforated plate and the protected installation as a vertical wall. Computed impact force, moment, and impulse on the breakwater and protected wall show nonlinear effects, and the main geometric parameter is the open-area ratio. In addition, the increase in the breakwater height is effective only for low open-area ratios. The influence of the arrangement of the holes are also investigated. Different flow patterns are obtained for small and large gaps between the breakwater and the wall. The relation between the loads on the breakwater and the wall also provides the basis for the optimal design of the breakwater, considering the tolerant hydrodynamic loads of protected structures.Comment: 37 pages, 27 figure

    Parallel fluid dynamics for the film and animation industries

    Get PDF
    Includes bibliographical references (leaves 142-149).The creation of automated fluid effects for film and media using computer simulations is popular, as artist time is reduced and greater realism can be achieved through the use of numerical simulation of physical equations. The fluid effects in today’s films and animations have large scenes with high detail requirements. With these requirements, the time taken by such automated approaches is large. To solve this, cluster environments making use of hundreds or more CPUs have been used. This overcomes the processing power and memory limitations of a single computer and allows very large scenes to be created. One of the newer methods for fluid simulation is the Lattice Boltzmann Method (LBM). This is a cellular automata type of algorithm, which parallelizes easily. An important part of the process of parallelization is load balancing; the distribution of computation amongst the available computing resources in the cluster. To date, the parallelization of the Lattice Boltzmann method only makes use of static load balancing. Instead, it is possible to make use of dynamic load balancing, which adjusts the computation distribution as the simulation progresses. Here, we investigate the use of the LBM in conjunction with a Volume of Fluid (VOF) surface representation in a parallel environment with the aim of producing large scale scenes for the film and animation industries. The VOF method tracks mass exchange between cells of the LBM. In particular, we implement the new dynamic load balancing algorithm to improve the efficiency of the fluid simulation using this method. Fluid scenes from films and animations have two important requirements: the amount of detail and the spatial resolution of the fluid. These aspects of the VOF LBM are explored by considering the time for scene creation using a single and multi-CPU implementation of the method. The scalability of the method is studied by plotting the run time, speedup and efficiency of scene creation against the number of CPUs. From such plots, an estimate is obtained of the feasibility of creating scenes of a giving level of detail. Such estimates enable the recommendation of architectures for creation of specific scenes. Using a parallel implementation of the VOF LBM method we successfully create large scenes with great detail. In general, considering the significant amounts of communication required for the parallel method, it is shown to scale well, favouring scenes with greater detail. The scalability studies show that the new dynamic load balancing algorithm improves the efficiency of the parallel implementation, but only when using lower number of CPUs. In fact, for larger number of CPUs, the dynamic algorithm reduces the efficiency. We hypothesise the latter effect can be removed by making using of centralized load balancing decision instead of the current decentralized approach. The use of a cluster comprising of 200 CPUs is recommended for the production of large scenes of a grid size 6003 in a reasonable time frame

    SPH modeling of water-related natural hazards

    Get PDF
    This paper collects some recent smoothed particle hydrodynamic (SPH) applications in the field of natural hazards connected to rapidly varied flows of both water and dense granular mixtures including sediment erosion and bed load transport. The paper gathers together and outlines the basic aspects of some relevant works dealing with flooding on complex topography, sediment scouring, fast landslide dynamics, and induced surge wave. Additionally, the preliminary results of a new study regarding the post-failure dynamics of rainfall-induced shallow landslide are presented. The paper also shows the latest advances in the use of high performance computing (HPC) techniques to accelerate computational fluid dynamic (CFD) codes through the efficient use of current computational resources. This aspect is extremely important when simulating complex three-dimensional problems that require a high computational cost and are generally involved in the modeling of water-related natural hazards of practical interest. The paper provides an overview of some widespread SPH free open source software (FOSS) codes applied to multiphase problems of theoretical and practical interest in the field of hydraulic engineering. The paper aims to provide insight into the SPH modeling of some relevant physical aspects involved in water-related natural hazards (e.g., sediment erosion and non-Newtonian rheology). The future perspectives of SPH in this application field are finally pointed out

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    This workshop was well attended by 52 participants with broad geographic representation from 11 countries and 3 continents. It was a nice blend of researchers with various backgrounds

    Algebraic Multigrid for Meshfree Methods

    Get PDF
    This thesis deals with the development of a new Algebraic Multigrid method (AMG) for the solution of linear systems arising from Generalized Finite Difference Methods (GFDM). In particular, we consider the Finite Pointset Method, which is based on GFDM. Being a meshfree method, FPM does not rely on a mesh and can therefore deal with moving geometries and free surfaces is a natural way and it does not require the generation of a mesh before the actual simulation. In industrial use cases the size of the linear systems often becomes large, which means that classical linear solvers often become the bottleneck in terms of simulation run time, because their convergence rate depends on the discretization size. Multigrid methods have proven to be very efficient linear solvers in the domain of mesh-based methods. Their convergence is independent of the discretization size, yielding a run time that only scales linearly with the problem size. AMG methods are a natural candidate for the solution of the linear systems arising in the FPM, as this thesis will show. They need to be tuned to the specific characteristics of GFDM, though. The AMG methods that are developed in this thesis achieve a speed-up of up to 33x compared to the classical linear solvers and therefore allow much more accurate simulations in the future.Diese Dissertation beschäftigt sich mit der Entwicklung einer neuen Algebraischen Mehrgittermethode für die Lösung linearer Gleichungssysteme aus Generalisierten Finite Differenzen Methoden. Im Speziellen betrachten wir die sogenannte Finite Pointset Method, eine gitterfreie Lagrange Methode, welche auf Generalisierten Finite Differenzen Methoden basiert. Die Finite Pointset Method wurde insbesondere für Simulationen von Vorgängen mit freien Oberflächen und bewegten Geometrien entwickelt, bei denen der gitterfreie Charakter der Methode besonders große Vorteile liefert: An den freien Oberflächen und nahe der Geometrie muss zu keinem Zeitpunkt – auch nicht zu Beginn der Simulation – ein Gitter erstellt oder angepasst werden. Dies ist ein großer Vorteil gegenüber klassischen gitterbasierten Methoden. Wie in gitterbasierten Methoden entstehen auch in der Finite Pointset Method und anderen Generalisierten Finite Differenzen Methoden große, dünn besetze lineare Gleichungssysteme. Das Lösen dieser Gleichungssysteme wird bei fein aufgelösten Simulationen, wie sie in der Industrie oft nötig sind, schnell zum zeitlichen Flaschenhals der Gesamtsimulation. Ohne eine geeignete Methode zur Lösung dieser Gleichungssysteme dauern Simulationen oft sehr lange oder sind praktisch nicht durchführbar. Auch kann es vorkommen, dass klassische Lösungsverfahren divergieren und die Simulation damit unmöglich wird. Im Kontext von gitterbasierten Methoden sind Mehrgittermethoden ein etabliertes Werkzeug, um die entstehenden linearen Gleichungssysteme effizient und robust zu lösen. Besonders hervorzuheben ist dabei die lineare Skalierbarkeit dieser Methoden in der Größe der Matrix. Damit eignen sie sich besonders für fein aufgelöste Simulationen. Algebraische Mehrgittermethoden sind natürliche Kandidaten für die Lösung der Gleichungssysteme aus Generalisierten Finite Differenzen Methoden, wie diese Dissertation zeigen wird. Außerdem entwickeln wir eine neue Algebraische Mehrgittermethode, die auf den Einsatz in der Finite Pointset Method zugeschnitten ist und die Besonderheiten dieser Methode beachtet. Dazu zählen die Eigenschaften der einzelnen Matrizen, die wir ebenfalls analysieren werden, und auch die Veränderung der Matrizen über mehrere Zeitschritte hinweg, die im Vergleich mit gitterbasierten Verfahren eine größere Schwierigkeit darstellt. Wir evaluieren unsere neue Methode anhand von akademischen und realen Beispielen, sowohl mit nur einem Prozess als auch mit mehreren (MPI-)Prozessen. Die hier neu entwickelte Algebraische Mehrgittermethode ist um ein Vielfaches schneller als klassische Verfahren zur Lösung linearer Gleichungssysteme und erlaubt damit neue, genauere Simulationen mit gitterfreien Methoden

    The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems

    Full text link
    We present a compendium of numerical simulation techniques, based on tensor network methods, aiming to address problems of many-body quantum mechanics on a classical computer. The core setting of this anthology are lattice problems in low spatial dimension at finite size, a physical scenario where tensor network methods, both Density Matrix Renormalization Group and beyond, have long proven to be winning strategies. Here we explore in detail the numerical frameworks and methods employed to deal with low-dimension physical setups, from a computational physics perspective. We focus on symmetries and closed-system simulations in arbitrary boundary conditions, while discussing the numerical data structures and linear algebra manipulation routines involved, which form the core libraries of any tensor network code. At a higher level, we put the spotlight on loop-free network geometries, discussing their advantages, and presenting in detail algorithms to simulate low-energy equilibrium states. Accompanied by discussions of data structures, numerical techniques and performance, this anthology serves as a programmer's companion, as well as a self-contained introduction and review of the basic and selected advanced concepts in tensor networks, including examples of their applications.Comment: 115 pages, 56 figure

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field
    • …
    corecore