8,670 research outputs found

    Efficient Classification for Metric Data

    Full text link
    Recent advances in large-margin classification of data residing in general metric spaces (rather than Hilbert spaces) enable classification under various natural metrics, such as string edit and earthmover distance. A general framework developed for this purpose by von Luxburg and Bousquet [JMLR, 2004] left open the questions of computational efficiency and of providing direct bounds on generalization error. We design a new algorithm for classification in general metric spaces, whose runtime and accuracy depend on the doubling dimension of the data points, and can thus achieve superior classification performance in many common scenarios. The algorithmic core of our approach is an approximate (rather than exact) solution to the classical problems of Lipschitz extension and of Nearest Neighbor Search. The algorithm's generalization performance is guaranteed via the fat-shattering dimension of Lipschitz classifiers, and we present experimental evidence of its superiority to some common kernel methods. As a by-product, we offer a new perspective on the nearest neighbor classifier, which yields significantly sharper risk asymptotics than the classic analysis of Cover and Hart [IEEE Trans. Info. Theory, 1967].Comment: This is the full version of an extended abstract that appeared in Proceedings of the 23rd COLT, 201

    Discrimination on the Grassmann Manifold: Fundamental Limits of Subspace Classifiers

    Full text link
    We present fundamental limits on the reliable classification of linear and affine subspaces from noisy, linear features. Drawing an analogy between discrimination among subspaces and communication over vector wireless channels, we propose two Shannon-inspired measures to characterize asymptotic classifier performance. First, we define the classification capacity, which characterizes necessary and sufficient conditions for the misclassification probability to vanish as the signal dimension, the number of features, and the number of subspaces to be discerned all approach infinity. Second, we define the diversity-discrimination tradeoff which, by analogy with the diversity-multiplexing tradeoff of fading vector channels, characterizes relationships between the number of discernible subspaces and the misclassification probability as the noise power approaches zero. We derive upper and lower bounds on these measures which are tight in many regimes. Numerical results, including a face recognition application, validate the results in practice.Comment: 19 pages, 4 figures. Revised submission to IEEE Transactions on Information Theor

    Efficient Learning of Linear Separators under Bounded Noise

    Full text link
    We study the learnability of linear separators in d\Re^d in the presence of bounded (a.k.a Massart) noise. This is a realistic generalization of the random classification noise model, where the adversary can flip each example xx with probability η(x)η\eta(x) \leq \eta. We provide the first polynomial time algorithm that can learn linear separators to arbitrarily small excess error in this noise model under the uniform distribution over the unit ball in d\Re^d, for some constant value of η\eta. While widely studied in the statistical learning theory community in the context of getting faster convergence rates, computationally efficient algorithms in this model had remained elusive. Our work provides the first evidence that one can indeed design algorithms achieving arbitrarily small excess error in polynomial time under this realistic noise model and thus opens up a new and exciting line of research. We additionally provide lower bounds showing that popular algorithms such as hinge loss minimization and averaging cannot lead to arbitrarily small excess error under Massart noise, even under the uniform distribution. Our work instead, makes use of a margin based technique developed in the context of active learning. As a result, our algorithm is also an active learning algorithm with label complexity that is only a logarithmic the desired excess error ϵ\epsilon
    corecore