1,465 research outputs found

    Lanes. A lightweigth overlay for service discovery in mobile ad hoc networks

    Get PDF
    The ability to discover services offered in a mobile ad hoc network is the major prerequisite for effective usability of these networks. Unfortunately, existing approaches to service trading are not well suited for these highly dynamic topologies since they either rely on centralized servers or on resource-consuming query flooding. Application layer overlays seem to be a more promising approach. However, existing solutions like the Content-Addressable Network (CAN) are especially designed for internet based peer-to-peer networks yielding structural conditions that are far too complex for ad hoc networks. Therefore, in this paper, we propose a more lightweight overlay structure: lanes. We present algorithms to correct and optimize its structure in case of topology changes and show how it enables the trading of services specified by arbitrary descriptions

    Modular P2P-Based Approach for RDF Data Storage and Retrieval

    Get PDF
    International audienceOne of the key elements of the Semantic Web is the Resource Description Framework (RDF). Efficient storage and retrieval of RDF data in large scale settings is still challenging and existing solutions are monolithic and thus not very flexible from a software engineering point of view. In this paper, we propose a modular system, based on the scalable Content-Addressable Network (CAN), which gives the possibility to store and retrieve RDF data in large scale settings. We identified and isolated key components forming such system in our design architecture. We have evaluated our system using the Grid'5000 testbed over 300 peers on 75 machines and the outcome of these micro-benchmarks show interesting results in terms of scalability and concurrent queries

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Optimising Structured P2P Networks for Complex Queries

    Get PDF
    With network enabled consumer devices becoming increasingly popular, the number of connected devices and available services is growing considerably - with the number of connected devices es- timated to surpass 15 billion devices by 2015. In this increasingly large and dynamic environment it is important that users have a comprehensive, yet efficient, mechanism to discover services. Many existing wide-area service discovery mechanisms are centralised and do not scale to large numbers of users. Additionally, centralised services suffer from issues such as a single point of failure, high maintenance costs, and difficulty of management. As such, this Thesis seeks a Peer to Peer (P2P) approach. Distributed Hash Tables (DHTs) are well known for their high scalability, financially low barrier of entry, and ability to self manage. They can be used to provide not just a platform on which peers can offer and consume services, but also as a means for users to discover such services. Traditionally DHTs provide a distributed key-value store, with no search functionality. In recent years many P2P systems have been proposed providing support for a sub-set of complex query types, such as keyword search, range queries, and semantic search. This Thesis presents a novel algorithm for performing any type of complex query, from keyword search, to complex regular expressions, to full-text search, over any structured P2P overlay. This is achieved by efficiently broadcasting the search query, allowing each peer to process the query locally, and then efficiently routing responses back to the originating peer. Through experimentation, this technique is shown to be successful when the network is stable, however performance degrades under high levels of network churn. To address the issue of network churn, this Thesis proposes a number of enhancements which can be made to existing P2P overlays in order to improve the performance of both the existing DHT and the proposed algorithm. Through two case studies these enhancements are shown to improve not only the performance of the proposed algorithm under churn, but also the performance of traditional lookup operations in these networks

    A scalable approach for content based image retrieval in cloud datacenter

    Get PDF
    The emergence of cloud datacenters enhances the capability of online data storage. Since massive data is stored in datacenters, it is necessary to effectively locate and access interest data in such a distributed system. However, traditional search techniques only allow users to search images over exact-match keywords through a centralized index. These techniques cannot satisfy the requirements of content based image retrieval (CBIR). In this paper, we propose a scalable image retrieval framework which can efficiently support content similarity search and semantic search in the distributed environment. Its key idea is to integrate image feature vectors into distributed hash tables (DHTs) by exploiting the property of locality sensitive hashing (LSH). Thus, images with similar content are most likely gathered into the same node without the knowledge of any global information. For searching semantically close images, the relevance feedback is adopted in our system to overcome the gap between low-level features and high-level features. We show that our approach yields high recall rate with good load balance and only requires a few number of hops

    Knowledge is at the Edge! How to Search in Distributed Machine Learning Models

    Full text link
    With the advent of the Internet of Things and Industry 4.0 an enormous amount of data is produced at the edge of the network. Due to a lack of computing power, this data is currently send to the cloud where centralized machine learning models are trained to derive higher level knowledge. With the recent development of specialized machine learning hardware for mobile devices, a new era of distributed learning is about to begin that raises a new research question: How can we search in distributed machine learning models? Machine learning at the edge of the network has many benefits, such as low-latency inference and increased privacy. Such distributed machine learning models can also learn personalized for a human user, a specific context, or application scenario. As training data stays on the devices, control over possibly sensitive data is preserved as it is not shared with a third party. This new form of distributed learning leads to the partitioning of knowledge between many devices which makes access difficult. In this paper we tackle the problem of finding specific knowledge by forwarding a search request (query) to a device that can answer it best. To that end, we use a entropy based quality metric that takes the context of a query and the learning quality of a device into account. We show that our forwarding strategy can achieve over 95% accuracy in a urban mobility scenario where we use data from 30 000 people commuting in the city of Trento, Italy.Comment: Published in CoopIS 201

    Approximate Matching for Peer-to-Peer Overlays with Cubit

    Full text link
    Keyword search is a critical component in most content retrieval systems. Despite the emergence of completely decentralized and efficient peer-to-peer techniques for content distribution, there have not been similarly efficient, accurate, and decentralized mechanisms for content discovery based on approximate search keys. In this paper, we present a scalable and efficient peer-to-peer system called Cubit with a new search primitive that can efficiently find the k data items with keys most similar to a given search key. The system works by creating a keyword metric space that encompasses both the nodes and the objects in the system, where the distance between two points is a measure of the similarity between the strings that the points represent. It provides a loosely-structured overlay that can efficiently navigate this space. We evaluate Cubit through both a real deployment as a search plugin for a popular BitTorrent client and a large-scale simulation and show that it provides an efficient, accurate and robust method to handle imprecise string search in filesharing applications.This work was supported in part by NSF-TRUST 0424422 and NSF-CAREER 0546568 grants
    • …
    corecore