6,897 research outputs found

    Automatically Leveraging MapReduce Frameworks for Data-Intensive Applications

    Full text link
    MapReduce is a popular programming paradigm for developing large-scale, data-intensive computation. Many frameworks that implement this paradigm have recently been developed. To leverage these frameworks, however, developers must become familiar with their APIs and rewrite existing code. Casper is a new tool that automatically translates sequential Java programs into the MapReduce paradigm. Casper identifies potential code fragments to rewrite and translates them in two steps: (1) Casper uses program synthesis to search for a program summary (i.e., a functional specification) of each code fragment. The summary is expressed using a high-level intermediate language resembling the MapReduce paradigm and verified to be semantically equivalent to the original using a theorem prover. (2) Casper generates executable code from the summary, using either the Hadoop, Spark, or Flink API. We evaluated Casper by automatically converting real-world, sequential Java benchmarks to MapReduce. The resulting benchmarks perform up to 48.2x faster compared to the original.Comment: 12 pages, additional 4 pages of references and appendi

    A zero-cost, real-time, Windows signal laboratory

    Get PDF
    This paper introduces a Windows-based signal capture, display, and waveform synthesis package called “Win-eLab”. The software is able to run on a conventional desktop or laptop with no additional hardware, and can perform real-time Fourier analysis on audio-frequency signals. This paper is intended as an introduction to Win-eLab, aimed at motivating further use of it in both teaching and self-directed learning contexts. The use of the software to familiarize students with the concept of “laboratory” instrumentation is discussed, as well as the usefulness of a simultaneous time-domain/frequency-domain display for understanding signals, particularly in signal processing and communications systems courses. It is anticipated that applications may extend beyond electrical & electronic engineering – for example, as an aid to understanding mechanical vibrations, acoustics, and in other discipline areas

    A microfluidic oligonucleotide synthesizer

    Get PDF
    De novo gene and genome synthesis enables the design of any sequence without the requirement of a pre-existing template as in traditional genetic engineering methods. The ability to mass produce synthetic genes holds great potential for biological research, but widespread availability of de novo DNA constructs is currently hampered by their high cost. In this work, we describe a microfluidic platform for parallel solid phase synthesis of oligonucleotides that can greatly reduce the cost of gene synthesis by reducing reagent consumption (by 100-fold) while maintaining a 100 pmol synthesis scale so there is no need for amplification before assembly. Sixteen oligonucleotides were synthesized in parallel on this platform and then successfully used in a ligation-mediated assembly method to generate DNA constructs 200 bp in length
    corecore