13,985 research outputs found

    Civil aircraft advanced avionics architectures - an insight into saras avionics, present and future perspective

    Get PDF
    Traditionally, the avionics architectures being implemented are of federated nature, which means that each avionics function has its own independent, dedicated fault-tolerant computing resources. Federated architecture has great advantage of inherent fault containment and at the same time envelops a potential risk of massive use of resources resulting in increase in weight, looming, cost and maintenance as well. With the drastic advancement in the computer and software technologies, the aviation industry is gradually moving towards the use of Integrated Modular Avionics (IMA) for civil transport aircraft, potentially leading to multiple avionics functions housed in each hardware platform. Integrated Modular Avionics is the most important concept of avionics architecture for next generation aircrafts. SARAS avionics suite is purely federated with almost glass cockpit architecture complying to FAR25. The Avionics activities from the inception to execution are governed by the regulations and procedures under the review of Directorate General of Civil Aviation (DGCA). Every phase of avionics activity has got its own technically involvement to make the system perfect. In addition the flight data handling, monitoring and analysis is again a thrust area in the civil aviation industry leading to safety and reliability of the machine and the personnel involved. NAL has been in this area for more than two decades and continues to excel in these technologies

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Time and Energy Managed Operations (TEMO): Cessna Citation II Flight Trials

    Get PDF
    From 9-26 October 2015 the Netherlands Aerospace Centre (NLR) in cooperation with Delft University of Technology (DUT) has executed Clean Sky flight trials with the Cessna Citation II research aircraft. The trials consisted of several descents and approaches at the Eelde airport near Groningen, demonstrating the TEMO (Time and Energy Managed Operations) concept developed in the Clean Sky Joint Technology Initiative research programme as part of the Systems for Green Operations (SGO) Integrated Technology Demonstrator. A TEMO descent aims to achieve an energy-managed idle-thrust continuous descent operation (CDO) while satisfying ATC time constraints, to maintain runway throughput. An optimal descent plan is calculated with an advanced on-board real-time aircraft trajectory optimisation algorithm considering forecasted weather and aircraft performance. The optimised descent plan was executed using the speed-on-elevator mode of an experimental Fly-By-Wire (FBW) system connected to the pitch servo motor of the Cessna Citation II aircraft. Several TEMO conceptual variants have been flown. It has been demonstrated that the TEMO concept enables arrival with timing errors below 10 seconds. The project was realised with the support of CONCORDE partners Universitat Politècnica de Catalunya (UPC) and PildoLabs from Barcelona, and the Royal Netherlands Meteorological Institute (KNMI).Peer ReviewedPostprint (published version

    Flight testing Time and Energy Managed Operations (TEMO)

    Get PDF
    The expected growth in air traffic combined with an increased public concern for the environment, have forced legislators to rethink the current air traffic system design. The current air traffic system operates at its capacity limits and is expected to lead to increased delays if traffic levels grow even further. Both in the United States and Europe, research projects have been initiated to develop the future Air Transportation System (ATS) to address capacity, and environmental, safety and economic issues. To address the environmental issues during descent and approach, a novel Continuous Descent Operations (CDO) concept, named Time and Energy Managed Operations (TEMO), has been developed co-sponsored by the Clean Sky Joint Undertaking. It uses energy principles to reduce fuel burn, gaseous emissions and noise nuisance whilst maintaining runway capacity. Different from other CDO concepts, TEMO optimizes the descent by using energy management to achieve a continuous engine-idle descent, while satisfying time constraints on both the Initial Approach Fix (IAF) and the runway threshold. As such, TEMO uses timemetering at two control points to facilitate flow management and arrival spacing. TEMO is in line with SESAR step 2 capabilities, since it proposes 4D trajectory management and is aimed at providing significant environmental benefits in the arrival phase without negatively affecting throughput, even in high density and peak-hour operations. In particular, TEMO addresses SESAR operational improvement (OI) TS-103: Controlled Time of Arrival (CTA) through use of datalink [1]. TEMO has been validated starting from initial performance batch studies at Technology Readiness Level (TRL) 3, up to Human-in-the-Loop studies in realistic environments using a moving base flight simulator at TRL 5 ([2]-[6]). In this paper the definition, preparation, performance and analysis of a flight test experiment is described with the objective to demonstrate the ability of the TEMO algorithm to provide accurate and safe aircraft guidance toward the Initial Approach Fix (IAF), and further down to the Stabilization Point (1000 ft AGL), to demonstrate the ability of the TEMO algorithm to meet absolute time requirements at IAF and/or runway threshold and to evaluate the performance of the system under test (e.g. fuel usage).Peer ReviewedPostprint (published version

    Spectrum Allocation, Spectrum Commons and Public Goods: the Role of the Market

    Get PDF
    The reallocation of radio spectrum to valuable new and emerging technologies and services is essential to achieving the next wave of productivity and consumer benefits driven by ICT. Currently spectrum is not allocated to the most valuable uses, particularly the large amount of spectrum held for government use, and command and control management cannot respond fully or quickly in reallocating spectrum. To achieve a more economically efficient allocation and the greatest overall benefit market mechanisms including trading and spectrum pricing must be introduced. Complementary reforms in areas other than spectrum management will be required, and the appropriate boundary between market and non-market allocation mechanisms need to be established. Setting clear principles regarding the market/non-market boundary will help in resisting the inevitable rent seeking by incumbents and potential entrants during the transition to market mechanisms. Countries that do not face up to these challenges and move quickly will see their citizens disadvantaged as spectrum becomes a key economic resource.spectrum policy, auctions, trading, spectrum pricing, digital switchover, real options, public sector use, licence exempt use, infrastructure, Competition Policy

    Satellite system performance assessment for in-flight entertainment and air traffic control

    Get PDF
    Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. However, the development of a dedicated satellite system for ATS (Air Traffic Services) and AOC (Airline Operational Communications) seems to be a long-term perspective. The objective of the presented system design is to provide both passenger application traffic access (Internet, GSM) and a high-reliability channel for aeronautical applications using the same satellite links. Due to the constraints in capacity and radio bandwidth allocation, very high frequencies (above 20 GHz) are considered here. The corresponding design implications for the air interface are taken into account and access performances are derived using a dedicated simulation model. Some preliminary results are shown in this paper to demonstrate the technical feasibility of such system design with increased capacity. More details and the open issues will be studied in the future of this research work

    Smarter grid through collective intelligence: user awareness for enhanced performance

    Get PDF
    This paper examines the scenario of a university campus, and the impact on energy consumption of the awareness of building managers and users (lecturers, students and administrative staff).Peer ReviewedPostprint (published version

    Girls in IT: How to develop talent and leverage support

    Get PDF
    The objectives of this panel are to inform the audience about national and regional initiatives developed by the National Center for Women & Information Technology (NCWIT) to reach out to middle and high school girls; learn from promising experiences in which the panelists have been directly involved; and discuss venues to scale and sustain efforts to increase women\u27s participation in technology careers. Panelists will describe their particular experiences, and discuss ways to utilize the Aspirations in Computing program to increase enrollment and retention of females in computing. A minimum of 30 minutes will be set aside for question and answer
    corecore