11,154 research outputs found

    Distributed Big-Data Optimization via Block Communications

    Get PDF
    We study distributed multi-agent large-scale optimization problems, wherein the cost function is composed of a smooth possibly nonconvex sum-utility plus a DC (Difference-of-Convex) regularizer. We consider the scenario where the dimension of the optimization variables is so large that optimizing and/or transmitting the entire set of variables could cause unaffordable computation and communication overhead. To address this issue, we propose the first distributed algorithm whereby agents optimize and communicate only a portion of their local variables. The scheme hinges on successive convex approximation (SCA) to handle the nonconvexity of the objective function, coupled with a novel block-signal tracking scheme, aiming at locally estimating the average of the agents' gradients. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Numerical results on a sparse regression problem show the effectiveness of the proposed algorithm and the impact of the block size on its practical convergence speed and communication cost

    A Distributed Asynchronous Method of Multipliers for Constrained Nonconvex Optimization

    Get PDF
    This paper presents a fully asynchronous and distributed approach for tackling optimization problems in which both the objective function and the constraints may be nonconvex. In the considered network setting each node is active upon triggering of a local timer and has access only to a portion of the objective function and to a subset of the constraints. In the proposed technique, based on the method of multipliers, each node performs, when it wakes up, either a descent step on a local augmented Lagrangian or an ascent step on the local multiplier vector. Nodes realize when to switch from the descent step to the ascent one through an asynchronous distributed logic-AND, which detects when all the nodes have reached a predefined tolerance in the minimization of the augmented Lagrangian. It is shown that the resulting distributed algorithm is equivalent to a block coordinate descent for the minimization of the global augmented Lagrangian. This allows one to extend the properties of the centralized method of multipliers to the considered distributed framework. Two application examples are presented to validate the proposed approach: a distributed source localization problem and the parameter estimation of a neural network.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0648

    Gradient-Free Distributed Optimization with Exact Convergence

    Full text link
    In this paper, a gradient-free distributed algorithm is introduced to solve a set constrained optimization problem under a directed communication network. Specifically, at each time-step, the agents locally compute a so-called pseudo-gradient to guide the updates of the decision variables, which can be applied in the fields where the gradient information is unknown, not available or non-existent. A surplus-based method is adopted to remove the doubly stochastic requirement on the weighting matrix, which enables the implementation of the algorithm in graphs having no associated doubly stochastic weighting matrix. For the convergence results, the proposed algorithm is able to obtain the exact convergence to the optimal value with any positive, non-summable and non-increasing step-sizes. Furthermore, when the step-size is also square-summable, the proposed algorithm is guaranteed to achieve the exact convergence to an optimal solution. In addition to the standard convergence analysis, the convergence rate of the proposed algorithm with respect to different cases of step-sizes is investigated. Finally, the effectiveness of the proposed algorithm is verified through numerical simulations

    Gradient-Free Nash Equilibrium Seeking in N-Cluster Games with Uncoordinated Constant Step-Sizes

    Full text link
    In this paper, we consider a problem of simultaneous global cost minimization and Nash equilibrium seeking, which commonly exists in NN-cluster non-cooperative games. Specifically, the agents in the same cluster collaborate to minimize a global cost function, being a summation of their individual cost functions, and jointly play a non-cooperative game with other clusters as players. For the problem settings, we suppose that the explicit analytical expressions of the agents' local cost functions are unknown, but the function values can be measured. We propose a gradient-free Nash equilibrium seeking algorithm by a synthesis of Gaussian smoothing techniques and gradient tracking. Furthermore, instead of using the uniform coordinated step-size, we allow the agents across different clusters to choose different constant step-sizes. When the largest step-size is sufficiently small, we prove a linear convergence of the agents' actions to a neighborhood of the unique Nash equilibrium under a strongly monotone game mapping condition, with the error gap being propotional to the largest step-size and the smoothing parameter. The performance of the proposed algorithm is validated by numerical simulations
    • …
    corecore