3,841 research outputs found

    Efficient Media Access Control and Distributed Channel-aware Scheduling for Wireless Ad-Hoc Networks

    Get PDF
    We address the problem of channel-aware scheduling for wireless ad-hoc networks, where the channel state information (CSI) are utilized to improve the overall system performance instead of the individual link performance. In our framework, multiple links cooperate to schedule data transmission in a decentralized and opportunistic manner, where channel probing is adopted to resolve collisions in the wireless medium. In the first part of the dissertation, we study this problem under the assumption that we know the channel statistics but not the instant CSI. In this problem, channel probing is followed by a transmission scheduling procedure executed independently within each link in the network. We study this problem for the popular block-fading channel model, where channel dependencies are inevitable between different time instances during the channel probing phase. We use optimal stopping theory to formulate this problem, but at carefully chosen time instances at which effective decisions are made. The problem can then be solved by a new stopping rule problem where the observations are independent between different time instances. We first characterize the system performance assuming the stopping rule problem has infinite stages. We then develop a measure to check how well the problem can be analyzed as an infinite horizon problem, and characterize the achievable system performance if we ignore the finite horizon constraint and design stopping rules based on the infinite horizon analysis. We then analyze the problem using backward induction when the finite horizon constraint cannot be ignored. We develop one recursive approach to solve the problem and show that the computational complexity is linear with respect to network size. We present an improved protocol to reduce the probing costs which requires no additional cost. Based on our analysis on single-channel networks, we extend the problem to ad-hoc networks where the wireless spectrum can be divided into multiple independent sub-channels for better efficiency. We start with a naive multi-channel protocol where the scheduling scheme is working independently within each sub-channel. We show that the naive protocol can only marginally improve the system performance. We then develop a protocol to jointly consider the opportunistic scheduling behavior across multiple sub-channels. We characterize the optimal stopping rule and present several bounds for the network throughputs of the multi-channel protocol. We show that by joint optimization of the scheduling scheme across multiple sub-channels, the proposed protocol improves the system performance considerably in contrast to that of single-channel systems. In the second part of the dissertation, we study this problem under the assumption that neither the instant CSI nor the channel statistics are known. We formulate the channel-aware scheduling problem using multi-armed bandit (MAB). We first present a semi-distributed MAB protocol which serves as the baseline for performance comparison. We then propose two forms of distributed MAB protocols, where each link keeps a local copy of the observations and plays the MAB game independently. In Protocol I the MAB game is only played once within each block, while in Protocol II it can be played multiple times. We show that the proposed distributed protocols can be considered as a generalized MAB procedure and each link is able to update its local copy of the observations for infinitely many times. We analyze the evolution of the local observations and the regrets of the system. For Protocol I, we show by simulation results that the local observations that are held independently at each link converge to the true parameters and the regret is comparable to that of the semi-distributed protocol. For Protocol II, we prove the convergence of the local observations and show an upper bound of the regret

    Distributed Opportunistic Scheduling for MIMO Ad-Hoc Networks

    Full text link
    Distributed opportunistic scheduling (DOS) protocols are proposed for multiple-input multiple-output (MIMO) ad-hoc networks with contention-based medium access. The proposed scheduling protocols distinguish themselves from other existing works by their explicit design for system throughput improvement through exploiting spatial multiplexing and diversity in a {\em distributed} manner. As a result, multiple links can be scheduled to simultaneously transmit over the spatial channels formed by transmit/receiver antennas. Taking into account the tradeoff between feedback requirements and system throughput, we propose and compare protocols with different levels of feedback information. Furthermore, in contrast to the conventional random access protocols that ignore the physical channel conditions of contending links, the proposed protocols implement a pure threshold policy derived from optimal stopping theory, i.e. only links with threshold-exceeding channel conditions are allowed for data transmission. Simulation results confirm that the proposed protocols can achieve impressive throughput performance by exploiting spatial multiplexing and diversity.Comment: Proceedings of the 2008 IEEE International Conference on Communications, Beijing, May 19-23, 200

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Opportunistic Relaying in Wireless Networks

    Full text link
    Relay networks having nn source-to-destination pairs and mm half-duplex relays, all operating in the same frequency band in the presence of block fading, are analyzed. This setup has attracted significant attention and several relaying protocols have been reported in the literature. However, most of the proposed solutions require either centrally coordinated scheduling or detailed channel state information (CSI) at the transmitter side. Here, an opportunistic relaying scheme is proposed, which alleviates these limitations. The scheme entails a two-hop communication protocol, in which sources communicate with destinations only through half-duplex relays. The key idea is to schedule at each hop only a subset of nodes that can benefit from \emph{multiuser diversity}. To select the source and destination nodes for each hop, it requires only CSI at receivers (relays for the first hop, and destination nodes for the second hop) and an integer-value CSI feedback to the transmitters. For the case when nn is large and mm is fixed, it is shown that the proposed scheme achieves a system throughput of m/2m/2 bits/s/Hz. In contrast, the information-theoretic upper bound of (m/2)loglogn(m/2)\log \log n bits/s/Hz is achievable only with more demanding CSI assumptions and cooperation between the relays. Furthermore, it is shown that, under the condition that the product of block duration and system bandwidth scales faster than logn\log n, the achievable throughput of the proposed scheme scales as Θ(logn)\Theta ({\log n}). Notably, this is proven to be the optimal throughput scaling even if centralized scheduling is allowed, thus proving the optimality of the proposed scheme in the scaling law sense.Comment: 17 pages, 8 figures, To appear in IEEE Transactions on Information Theor

    Parallel Opportunistic Routing in Wireless Networks

    Full text link
    We study benefits of opportunistic routing in a large wireless ad hoc network by examining how the power, delay, and total throughput scale as the number of source- destination pairs increases up to the operating maximum. Our opportunistic routing is novel in a sense that it is massively parallel, i.e., it is performed by many nodes simultaneously to maximize the opportunistic gain while controlling the inter-user interference. The scaling behavior of conventional multi-hop transmission that does not employ opportunistic routing is also examined for comparison. Our results indicate that our opportunistic routing can exhibit a net improvement in overall power--delay trade-off over the conventional routing by providing up to a logarithmic boost in the scaling law. Such a gain is possible since the receivers can tolerate more interference due to the increased received signal power provided by the multi-user diversity gain, which means that having more simultaneous transmissions is possible.Comment: 18 pages, 7 figures, Under Review for Possible Publication in IEEE Transactions on Information Theor
    corecore