1,921 research outputs found

    A Distributed Iterative Algorithm for Optimal Scheduling in Grid Computing

    Get PDF
    The paper studies a distributed iterative algorithm for optimal scheduling in grid computing. Grid user's requirements are formulated as dimensions in a quality of service problem expressed as a market game played by grid resource agents and grid task agents. User benefits resulting from taking decisions regarding each Quality of Service dimension are described by separate utility functions. The total system quality of service utility is defined as a linear combination of the discrete form utility functions. The paper presents distributed algorithms to iteratively optimize task agents and resource agents functioning as sub-problems of the grid resource QoS scheduling optimization. Such constructed resource scheduling algorithm finds a multiple quality of service solution optimal for grid users, which fulfils some specified user preferences. The proposed pricing based distributed iterative algorithm has been evaluated by studying the effect of QoS factors on benefits of grid user utility, revenue of grid resource provider and execution success ratio

    Economic-based Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Computational Grids, emerging as an infrastructure for next generation computing, enable the sharing, selection, and aggregation of geographically distributed resources for solving large-scale problems in science, engineering, and commerce. As the resources in the Grid are heterogeneous and geographically distributed with varying availability and a variety of usage and cost policies for diverse users at different times and, priorities as well as goals that vary with time. The management of resources and application scheduling in such a large and distributed environment is a complex task. This thesis proposes a distributed computational economy as an effective metaphor for the management of resources and application scheduling. It proposes an architectural framework that supports resource trading and quality of services based scheduling. It enables the regulation of supply and demand for resources and provides an incentive for resource owners for participating in the Grid and motives the users to trade-off between the deadline, budget, and the required level of quality of service. The thesis demonstrates the capability of economic-based systems for peer-to-peer distributed computing by developing users' quality-of-service requirements driven scheduling strategies and algorithms. It demonstrates their effectiveness by performing scheduling experiments on the World-Wide Grid for solving parameter sweep applications

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    The Contemporary Affirmation of Taxonomy and Recent Literature on Workflow Scheduling and Management in Cloud Computing

    Get PDF
    The Cloud computing systemspreferred over the traditional forms of computing such as grid computing, utility computing, autonomic computing is attributed forits ease of access to computing, for its QoS preferences, SLA2019;s conformity, security and performance offered with minimal supervision. A cloud workflow schedule when designed efficiently achieves optimalre source sage, balance of workloads, deadline specific execution, cost control according to budget specifications, efficient consumption of energy etc. to meet the performance requirements of today2019; svast scientific and business requirements. The businesses requirements under recent technologies like pervasive computing are motivating the technology of cloud computing for further advancements. In this paper we discuss some of the important literature published on cloud workflow scheduling

    Cost-Efficient Scheduling for Deadline Constrained Grid Workflows

    Get PDF
    Cost optimization for workflow scheduling while meeting deadline is one of the fundamental problems in utility computing. In this paper, a two-phase cost-efficient scheduling algorithm called critical chain is presented. The proposed algorithm uses the concept of slack time in both phases. The first phase is deadline distribution over all tasks existing in the workflow which is done considering critical path properties of workflow graphs. Critical chain uses slack time to iteratively select most critical sequence of tasks and then assigns sub-deadlines to those tasks. In the second phase named mapping step, it tries to allocate a server to each task considering task's sub-deadline. In the mapping step, slack time priority in selecting ready task is used to reduce deadline violation. Furthermore, the algorithm tries to locally optimize the computation and communication costs of sequential tasks exploiting dynamic programming. After proposing the scheduling algorithm, three measures for the superiority of a scheduling algorithm are introduced, and the proposed algorithm is compared with other existing algorithms considering the measures. Results obtained from simulating various systems show that the proposed algorithm outperforms four well-known existing workflow scheduling algorithms

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon
    corecore