2,840 research outputs found

    Robust PCA as Bilinear Decomposition with Outlier-Sparsity Regularization

    Full text link
    Principal component analysis (PCA) is widely used for dimensionality reduction, with well-documented merits in various applications involving high-dimensional data, including computer vision, preference measurement, and bioinformatics. In this context, the fresh look advocated here permeates benefits from variable selection and compressive sampling, to robustify PCA against outliers. A least-trimmed squares estimator of a low-rank bilinear factor analysis model is shown closely related to that obtained from an 0\ell_0-(pseudo)norm-regularized criterion encouraging sparsity in a matrix explicitly modeling the outliers. This connection suggests robust PCA schemes based on convex relaxation, which lead naturally to a family of robust estimators encompassing Huber's optimal M-class as a special case. Outliers are identified by tuning a regularization parameter, which amounts to controlling sparsity of the outlier matrix along the whole robustification path of (group) least-absolute shrinkage and selection operator (Lasso) solutions. Beyond its neat ties to robust statistics, the developed outlier-aware PCA framework is versatile to accommodate novel and scalable algorithms to: i) track the low-rank signal subspace robustly, as new data are acquired in real time; and ii) determine principal components robustly in (possibly) infinite-dimensional feature spaces. Synthetic and real data tests corroborate the effectiveness of the proposed robust PCA schemes, when used to identify aberrant responses in personality assessment surveys, as well as unveil communities in social networks, and intruders from video surveillance data.Comment: 30 pages, submitted to IEEE Transactions on Signal Processin

    Distributed, MapReduce-Based Nearest Neighbor and E-Ball Kernel k-Means

    Get PDF

    Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos

    Full text link
    Deep learning has been demonstrated to achieve excellent results for image classification and object detection. However, the impact of deep learning on video analysis (e.g. action detection and recognition) has been limited due to complexity of video data and lack of annotations. Previous convolutional neural networks (CNN) based video action detection approaches usually consist of two major steps: frame-level action proposal detection and association of proposals across frames. Also, these methods employ two-stream CNN framework to handle spatial and temporal feature separately. In this paper, we propose an end-to-end deep network called Tube Convolutional Neural Network (T-CNN) for action detection in videos. The proposed architecture is a unified network that is able to recognize and localize action based on 3D convolution features. A video is first divided into equal length clips and for each clip a set of tube proposals are generated next based on 3D Convolutional Network (ConvNet) features. Finally, the tube proposals of different clips are linked together employing network flow and spatio-temporal action detection is performed using these linked video proposals. Extensive experiments on several video datasets demonstrate the superior performance of T-CNN for classifying and localizing actions in both trimmed and untrimmed videos compared to state-of-the-arts

    Robust EM algorithm for model-based curve clustering

    Full text link
    Model-based clustering approaches concern the paradigm of exploratory data analysis relying on the finite mixture model to automatically find a latent structure governing observed data. They are one of the most popular and successful approaches in cluster analysis. The mixture density estimation is generally performed by maximizing the observed-data log-likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the EM algorithm initialization is crucial. In addition, the standard EM algorithm requires the number of clusters to be known a priori. Some solutions have been provided in [31, 12] for model-based clustering with Gaussian mixture models for multivariate data. In this paper we focus on model-based curve clustering approaches, when the data are curves rather than vectorial data, based on regression mixtures. We propose a new robust EM algorithm for clustering curves. We extend the model-based clustering approach presented in [31] for Gaussian mixture models, to the case of curve clustering by regression mixtures, including polynomial regression mixtures as well as spline or B-spline regressions mixtures. Our approach both handles the problem of initialization and the one of choosing the optimal number of clusters as the EM learning proceeds, rather than in a two-fold scheme. This is achieved by optimizing a penalized log-likelihood criterion. A simulation study confirms the potential benefit of the proposed algorithm in terms of robustness regarding initialization and funding the actual number of clusters.Comment: In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), 2013, Dallas, TX, US

    A robust approach to model-based classification based on trimming and constraints

    Full text link
    In a standard classification framework a set of trustworthy learning data are employed to build a decision rule, with the final aim of classifying unlabelled units belonging to the test set. Therefore, unreliable labelled observations, namely outliers and data with incorrect labels, can strongly undermine the classifier performance, especially if the training size is small. The present work introduces a robust modification to the Model-Based Classification framework, employing impartial trimming and constraints on the ratio between the maximum and the minimum eigenvalue of the group scatter matrices. The proposed method effectively handles noise presence in both response and exploratory variables, providing reliable classification even when dealing with contaminated datasets. A robust information criterion is proposed for model selection. Experiments on real and simulated data, artificially adulterated, are provided to underline the benefits of the proposed method
    corecore