1,784 research outputs found

    An efficient data transmission policy in an integrated voice-data ds-cdma network

    Get PDF
    CDMA schemes appear to be promising access techniques for coping with the requirements of third-generation mobile systems, mainly because of their flexibility. This paper proposes an adaptive S-ALOHA DS-CDMA access scheme as a method for integrating non-real time (i.e. Internet applications) and real-time (i.e. voice) services, by exploiting the potentials of CDMA under time-varying conditions. The adaptive component terminals autonomously change their transmission rate according to the total (voice+data) channel occupancy, so that the minimum possible data delay is almost always achieved.Peer ReviewedPostprint (published version

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service
    • …
    corecore