4,344 research outputs found

    Low Cost Quality of Service Multicast Routing in High Speed Networks

    Get PDF
    Many of the services envisaged for high speed networks, such as B-ISDN/ATM, will support real-time applications with large numbers of users. Examples of these types of application range from those used by closed groups, such as private video meetings or conferences, where all participants must be known to the sender, to applications used by open groups, such as video lectures, where partcipants need not be known by the sender. These types of application will require high volumes of network resources in addition to the real-time delay constraints on data delivery. For these reasons, several multicast routing heuristics have been proposed to support both interactive and distribution multimedia services, in high speed networks. The objective of such heuristics is to minimise the multicast tree cost while maintaining a real-time bound on delay. Previous evaluation work has compared the relative average performance of some of these heuristics and concludes that they are generally efficient, although some perform better for small multicast groups and others perform better for larger groups. Firstly, we present a detailed analysis and evaluation of some of these heuristics which illustrates that in some situations their average performance is reversed; a heuristic that in general produces efficient solutions for small multicasts may sometimes produce a more efficient solution for a particular large multicast, in a specific network. Also, in a limited number of cases using Dijkstra's algorithm produces the best result. We conclude that the efficiency of a heuristic solution depends on the topology of both the network and the multicast, and that it is difficult to predict. Because of this unpredictability we propose the integration of two heuristics with Dijkstra's shortest path tree algorithm to produce a hybrid that consistently generates efficient multicast solutions for all possible multicast groups in any network. These heuristics are based on Dijkstra's algorithm which maintains acceptable time complexity for the hybrid, and they rarely produce inefficient solutions for the same network/multicast. The resulting performance attained is generally good and in the rare worst cases is that of the shortest path tree. The performance of our hybrid is supported by our evaluation results. Secondly, we examine the stability of multicast trees where multicast group membership is dynamic. We conclude that, in general, the more efficient the solution of a heuristic is, the less stable the multicast tree will be as multicast group membership changes. For this reason, while the hybrid solution we propose might be suitable for use with closed user group multicasts, which are likely to be stable, we need a different approach for open user group multicasting, where group membership may be highly volatile. We propose an extension to an existing heuristic that ensures multicast tree stability where multicast group membership is dynamic. Although this extension decreases the efficiency of the heuristics solutions, its performance is significantly better than that of the worst case, a shortest path tree. Finally, we consider how we might apply the hybrid and the extended heuristic in current and future multicast routing protocols for the Internet and for ATM Networks.

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Minimum power multicasting with delay bound constraints in Ad Hoc wireless networks

    Get PDF
    In this paper, we design a new heuristic for an important extension of the minimum power multicasting problem in ad hoc wireless networks. Assuming that each transmission takes a fixed amount of time, we impose constraints on the number of hops allowed to reach the destination nodes in the multicasting application. This setting would be applicable in time critical or real time applications, and the relative importance of the nodes may be indicated by these delay bounds. We design a filtered beam search procedure for solving this problem. The performance of our algorithm is demonstrated on numerous test cases by benchmarking it against an optimal algorithm in small problem instances, and against a modified version of the well-known Broadcast Incremental Power (BIP) algorithm 20 for relatively large problems

    Algorithmic Aspects of Energy-Delay Tradeoff in Multihop Cooperative Wireless Networks

    Full text link
    We consider the problem of energy-efficient transmission in delay constrained cooperative multihop wireless networks. The combinatorial nature of cooperative multihop schemes makes it difficult to design efficient polynomial-time algorithms for deciding which nodes should take part in cooperation, and when and with what power they should transmit. In this work, we tackle this problem in memoryless networks with or without delay constraints, i.e., quality of service guarantee. We analyze a wide class of setups, including unicast, multicast, and broadcast, and two main cooperative approaches, namely: energy accumulation (EA) and mutual information accumulation (MIA). We provide a generalized algorithmic formulation of the problem that encompasses all those cases. We investigate the similarities and differences of EA and MIA in our generalized formulation. We prove that the broadcast and multicast problems are, in general, not only NP hard but also o(log(n)) inapproximable. We break these problems into three parts: ordering, scheduling and power control, and propose a novel algorithm that, given an ordering, can optimally solve the joint power allocation and scheduling problems simultaneously in polynomial time. We further show empirically that this algorithm used in conjunction with an ordering derived heuristically using the Dijkstra's shortest path algorithm yields near-optimal performance in typical settings. For the unicast case, we prove that although the problem remains NP hard with MIA, it can be solved optimally and in polynomial time when EA is used. We further use our algorithm to study numerically the trade-off between delay and power-efficiency in cooperative broadcast and compare the performance of EA vs MIA as well as the performance of our cooperative algorithm with a smart noncooperative algorithm in a broadcast setting.Comment: 12 pages, 9 figure

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017
    corecore