188,902 research outputs found

    EbbRT: Elastic Building Block Runtime - case studies

    Full text link
    We present a new systems runtime, EbbRT, for cloud hosted applications. EbbRT takes a different approach to the role operating systems play in cloud computing. It supports stitching application functionality across nodes running commodity OSs and nodes running specialized application specific software that only execute what is necessary to accelerate core functions of the application. In doing so, it allows tradeoffs between efficiency, developer productivity, and exploitation of elasticity and scale. EbbRT, as a software model, is a framework for constructing applications as collections of standard application software and Elastic Building Blocks (Ebbs). Elastic Building Blocks are components that encapsulate runtime software objects and are implemented to exploit the raw access, scale and elasticity of IaaS resources to accelerate critical application functionality. This paper presents the EbbRT architecture, our prototype and experimental evaluation of the prototype under three different application scenarios

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    Dynamic Model-based Management of Service-Oriented Infrastructure.

    Get PDF
    Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation

    EbbRT: Elastic Building Block Runtime - overview

    Full text link
    EbbRT provides a lightweight runtime that enables the construction of reusable, low-level system software which can integrate with existing, general purpose systems. It achieves this by providing a library that can be linked into a process on an existing OS, and as a small library OS that can be booted directly on an IaaS node
    corecore