95,186 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Tracking decision-making during architectural design

    Get PDF
    There is a powerful cocktail of circumstances governing the way decisions are made during the architectural design process of a building project. There is considerable potential for misunderstandings, inappropriate changes, change which give rise to unforeseen difficulties, decisions which are not notified to all interested parties, and many other similar problems. The paper presents research conducted within the frame of the EPSRC funded ADS project aiming at addressing the problems linked with the evolution and changing environment of project information to support better decision-making. The paper presents the conceptual framework as well as the software environment that has been developed to support decision-making during building projects, and reports on work carried out on the application of the approach to the architectural design stage. This decision-tracking environment has been evaluated and validated by professionals and practitioners from industry using several instruments as described in the paper

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    LAS: a software platform to support oncological data management

    Get PDF
    The rapid technological evolution in the biomedical and molecular oncology fields is providing research laboratories with huge amounts of complex and heterogeneous data. Automated systems are needed to manage and analyze this knowledge, allowing the discovery of new information related to tumors and the improvement of medical treatments. This paper presents the Laboratory Assistant Suite (LAS), a software platform with a modular architecture designed to assist researchers throughout diverse laboratory activities. The LAS supports the management and the integration of heterogeneous biomedical data, and provides graphical tools to build complex analyses on integrated data. Furthermore, the LAS interfaces are designed to ease data collection and management even in hostile environments (e.g., in sterile conditions), so as to improve data qualit
    • …
    corecore